Implant associated osteomyelitis (OM) is difficult to treat with antibiotics, and outcomes remain poor. Some reports suggest that hyperbaric oxygen treatment is a safe and effective means of treating OM. We tested this hypothesis in a murine model. Clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae were used. The mice were infected with each of the three pathogens, treated with 100% oxygen at high pressure, hyperbaric oxygen (HBO), and monitored for the ability of HBO to prevent and/or clear the OM infection. Assessments included bacterial burden of the tibias and lesion scores, as well as receptor activator of NF-kB ligand (RANKL) and myeloperoxidase (MPO) concentrations. HBO resulted in more severe lesion scores and higher RANKL and MPO concentrations for MRSA. A significant positive correlation was found between RANKL concentration and lesion score. No significant difference was found with HBO in P. aeruginosa infections and K. pneumoniae seems to either not infect bone well or get cleared before establishing an infection. The model is useful for studying OM infections caused by MRSA and P. aeruginosa, but HBO does not appear to be an efficacious treatment of an implant-associated OM infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.