Human milk oligosaccharides (HMOs) shape gut microbiota during infancy by acting as fermentable energy source. Using a semi-continuous colon simulator, effect of an HMO, 2′-fucosyllactose (2′-FL), on composition of the infant microbiota and microbial metabolites was evaluated in comparison to galacto-oligosaccharide (GOS) and lactose and control without additional carbon source. Data was analysed according to faecal sample donor feeding type: breast-fed (BF) or formula-fed (FF), and to rate of 2′-FL fermentation: fast or slow. Variation was found between the simulations in the ability to utilise 2′-FL. The predominant phyla regulated by 2′-FL, GOS and lactose were significant increase in Firmicutes, numerical in Actinobacteria, and numerical decrease in Proteobacteria compared to control. Verrucomicrobia increased in FF accounted for Akkermansia, whereas in fast-fermenting simulations Actinobacteria increased with trend for higher Bifidobacterium, and Proteobacteria decrease accounted for Enterobacteriaceae. Short-chain fatty acids and lactic acid with 2′-FL were produced in intermediate levels being between ones generated by the control and GOS or lactose. In 2′-FL fast-fermenting group, acetic acid specifically increased with 2′-FL, whereas lactose and GOS also increased lactic acid. The results highlight specificity of 2′-FL as energy source for only certain microbes over GOS and lactose in the simulated gut model.
A dental biofilm forms a distinct environment where microorganisms live in a matrix of extracellular polysaccharides. The biofilm favors certain bacteria and creates a habitat that functions differently compared to planktonic bacteria. Reproducible model systems which help to address various questions related to biofilm formation, the process of caries development, and its prevention are needed and are continuously developed. Recent research using both batch culture, continuous culture and flow cells in caries biofilm formation is presented. The development of new techniques and equipment has led to a deeper understanding of how caries biofilms function. Biofilm models have also been used in the development of materials inhibiting secondary caries. This short review summarizes available models to study these questions.
Prebiotic human milk oligosaccharides (HMOs) are found in human milk, which are not digested by infants but are metabolized by beneficial gut bacteria. We determined the ability of 57 bacterial strains within the Family Lactobacillaceae and genera Bifidobacterium and Bacteroides and potentially pathogenic bacteria to ferment the HMOs 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose. In addition, prebiotic galacto-oligosaccharides (GOS), lactose, fucose, and glucose were evaluated as carbon sources for these bacterial strains. Bacterial growth was monitored using the automatic Bioscreen C system. Only certain bifidobacteria, such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum , as well as Bacteroides fragilis, Bacteroides vulgatus, and Bacteroides thetaiotaomicron utilized the studied HMOs as their sole carbon source, whereas almost all studied bacterial strains were able to utilize GOS, lactose, and glucose. The selectivity in utilization of HMOs by only certain bacteria can be advantageous by promoting beneficial microbes but not supporting the harmful pathogens in contrast to other less selective prebiotics.
Xylitol has been widely documented to have dental health benefits, such as reducing the risk for dental caries. Here we report on other health benefits that have been investigated for xylitol. In skin, xylitol has been reported to improve barrier function and suppress the growth of potential skin pathogens. As a non-digestible carbohydrate, xylitol enters the colon where it is fermented by members of the colonic microbiota; species of the genus Anaerostipes have been reported to ferment xylitol and produce butyrate. The most common Lactobacillus and Bifidobacterium species do not appear to be able to grow on xylitol. The non-digestible but fermentable nature of xylitol also contributes to a constipation relieving effect and improved bone mineral density. Xylitol also modulates the immune system, which, together with its antimicrobial activity contribute to a reduced respiratory tract infection, sinusitis, and otitis media risk. As a low caloric sweetener, xylitol may contribute to weight management. It has been suggested that xylitol also increases satiety, but these results are not convincing yet. The benefit of xylitol on metabolic health, in addition to the benefit of the mere replacement of sucrose, remains to be determined in humans. Additional health benefits of xylitol have thus been reported and indicate further opportunities but need to be confirmed in human studies.
Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between bifidobacteria utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2′-fucosyllactose (2′-FL) in Bifidobacterium longum subsp. infantis Bi-26. RNA-seq and metabolite analysis (NMR/GCMS) was performed on samples at early (A600 = 0.25), mid-log (0.5–0.7) and late-log phases (1.0–2.0) of growth. Transcriptomic analysis revealed many gene clusters including three novel ABC-type sugar transport clusters to be upregulated in Bi-26 involved in processing of 2′-FL along with metabolism of its monomers glucose, fucose and galactose. Metabolite data confirmed the production of formate, acetate, 1,2-propanediol, lactate and cleaving of fucose from 2′-FL. The formation of acetate, formate, and lactate showed how the cell uses metabolites during fermentation to produce higher levels of ATP (mid-log compared to other stages) or generate cofactors to balance redox. We concluded that 2′-FL metabolism is a complex process involving multiple gene clusters, that produce a more diverse metabolite profile compared to lactose. These results provide valuable insight on the mode-of-action of 2′-FL utilization by Bifidobacterium longum subsp. infantis Bi-26.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.