Therapy Consortium EU-FP7. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts.
SummaryHuman stem cells represent a potential source for implants that replace the depleted functional beta cell mass (FBM) in diabetes patients. Human embryonic stem cell-derived pancreatic endoderm (hES-PE) can generate implants with glucose-responsive beta cells capable of reducing hyperglycemia in mice. This study with device-encapsulated hES-PE (4 × 106 cells/mouse) determines the biologic characteristics at which implants establish metabolic control during a 50-week follow-up. A metabolically adequate FBM was achieved by (1) formation of a sufficient beta cell number (>0.3 × 106/mouse) at >50% endocrine purity and (2) their maturation to a functional state comparable with human pancreatic beta cells, as judged by their secretory responses during perifusion, their content in typical secretory vesicles, and their nuclear NKX6.1-PDX1-MAFA co-expression. Assessment of FBM in implants and its correlation with in vivo metabolic markers will guide clinical translation of stem cell-derived grafts in diabetes.
Aims/hypothesis Intraportal human islet cell grafts do not consistently and sustainably induce insulin-independency in type 1 diabetic patients. The reasons for losses in donor cells are difficult to assess in patients. This study in streptozotocin-diabetic nude rats examines whether outcome is better in an extra-hepatic site such as omentum. Methods Intraportal and omental implants of human islet cell grafts with the same beta cell number were followed for function and cellular composition over 5 weeks. Their outcome was also compared with that of rat islet cell grafts with similar beta cell numbers but higher purity. Results While all intraportal recipients of rat islet cell grafts were normoglycaemic until post-transplant (PT) week 5, none was with human islet cell grafts; loss of human implants was associated with early infiltration of natural killer and CD45R-positive cells. Human islet cell implants in omentum achieved plasma human C-peptide positivity and normoglycaemia in, respectively, nine of 13 and five of 13 recipients until PT week 5; failures were not associated with inflammatory infiltrates but with lower beta cell numbers and purity of the grafts. Observations in human and rat islet cell implants in the omentum suggest that a delayed revascularisation can interfere with their metabolic outcome. Irrespective of normalisation, human omental implants presented beta cell aggregates adjacent to alpha cells and duct cells. Conclusions/interpretation In nude rats, human islet cell implants survive better in omentum than in liver, with positive influences of the number and purity of implanted beta cells. These observations can guide studies in patients.
Aims/hypothesis As current islet-transplantation protocols suffer from significant graft loss and dysfunction, strategies to sustain the long-term benefits of this therapy are required. Rapid and adequate oxygen and nutrient delivery by blood vessels improves islet engraftment and function. The present report evaluated a potentially beneficial effect of adult human blood outgrowth endothelial cells (BOEC) on islet graft vascularisation and function. Methods Human BOEC, 5×10 5 , were co-transplanted with a rat marginal-islet graft under the kidney capsule of hyperglycaemic NOD severe combined immunodeficiency (SCID) mice, and the effect on metabolic outcome was evaluated. Results Although vessel density remained unaffected, cotransplantation of islets with BOEC resulted in a significant and specific improvement of glycaemia and increased plasma C-peptide. Moreover, in contrast to control mice, BOEC recipients displayed reduced beta cell death and increases in body weight, beta cell proliferation and graft-vessel and beta cell volume. In vivo cell tracing demonstrated that BOEC remain at the site of transplantation and do not expand. The potential clinical applicability was underscored by the observed metabolic benefit of co-transplanting islets with BOEC derived from a type 1 diabetes patient. Conclusions/interpretation The present data support the use of autologous BOEC in translational studies that aim to improve current islet-transplantation protocols for the treatment of brittle type 1 diabetes.
Device‐encapsulated human stem cell‐derived pancreatic endoderm (PE) can generate functional β‐cell implants in the subcutis of mice, which has led to the start of clinical studies in type 1 diabetes. Assessment of the formed functional β‐cell mass (FBM) and its correlation with in vivo metabolic markers can guide clinical translation. We recently reported ex vivo characteristics of device‐encapsulated human embryonic stem cell‐derived (hES)‐PE implants in mice that had established a metabolically adequate FBM during 50‐week follow‐up. Cell suspensions from retrieved implants indicated a correlation with the number of formed β cells and their maturation to a functional state comparable to human pancreatic β cells. Variability in metabolic outcome was attributed to differences in number of PE‐generated β cells. This variability hinders studies on processes involved in FBM‐formation. This study reports modifications that reduce variability. It is undertaken with device‐encapsulated human induced pluripotent stem cell‐derived‐PE subcutaneously implanted in mice. Cell mass of each cell type was determined on intact tissue inside the device to obtain more precise data than following isolation and dispersion. Implants in a preformed pouch generated a glucose‐controlling β‐cell mass within 20 weeks in over 60% of recipients versus less than 20% in the absence of a pouch, whether the same or threefold higher cell dose had been inserted. In situ analysis of implants indicated a role for pancreatic progenitor cell expansion and endocrine differentiation in achieving the size of β‐ and α‐cell mass that correlated with in vivo markers of metabolic control. stem cells translational medicine 2019;8:1296&1305
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.