A combination of structural and pigmentary components is responsible for many of the colour displays of animals. Despite the ubiquity of this type of coloration, neither the relative contribution of structures and pigments to variation in such colour displays nor the relative effects of extrinsic factors on the structural and pigment-based components of such colour has been determined. Understanding the sources of colour variation is important because structures and pigments may convey different information to conspecifics. In an experiment on captive American goldfinches Carduelis tristis, we manipulated two parameters, carotenoid availability and food availability, known to affect the expression of carotenoid pigments in a full-factorial design. Yellow feathers from these birds were then analysed in two ways. First, we used full-spectrum spectrometry and high-performance liquid chromatography to examine the extent to which variation in white structural colour and total carotenoid content was associated with variation in colour properties of feathers. The carotenoid content of yellow feathers predicted two colour parameters (principal component 1-representing high values of ultraviolet and yellow chroma and low values of violet-blue chroma-and hue). Two different colour parameters (violet-blue and yellow chroma) from white de-pigmented feathers, as well as carotenoid content, predicted reflectance measurements from yellow feathers. Second, we determined the relative effects of our experimental manipulations on white structural colour and yellow colour. Carotenoid availability directly affected yellow colour, while food availability affected it only in combination with carotenoid availability. None of our manipulations had significant effects on the expression of white structural colour. Our results suggest that the contribution of microstructures to variation in the expression of yellow coloration is less than the contribution of carotenoid content, and that carotenoid deposition is more dependent on extrinsic variability than is the production of white structural colour.
SUMMARYIt has been well established that carotenoid and melanin pigmentation are often condition-dependent traits in vertebrates. Expression of carotenoid coloration in birds has been shown to reflect pigment intake, food access and parasite load; however, the relative importance of and the potential interactions among these factors have not been previously considered. Moreover, carotenoid and melanin pigmentation have been proposed to signal fundamentally different aspects of individual condition but few data exist to test this idea. We simultaneously manipulated three environmental conditions under which American goldfinches (Cardeulis tristis) grew colorful feathers and developed carotenoid pigmentation of their bills. Male goldfinches were held with either high or low carotenoid supplementation, pulsed or continuous antimicrobial drug treatment, or restricted or unlimited access to food. Carotenoid supplementation had an overriding effect on yellow feather coloration. Males given more lutein and zeaxanthin grew yellow feathers with hue shifted toward orange and with higher yellow chroma than males supplemented with fewer carotenoids. Parasites and food access did not significantly affect yellow feather coloration, and there were only minor interaction effects for the three treatments. By contrast, bill coloration was significantly affected by all three treatments. Carotenoid supplementation had a significant effect on yellow chroma of bills, drug treatment and food access both had a significant effect on bill hue, and food access had a significant effect on the yellow brightness of bills. Neither the size nor blackness of the black caps of male goldfinches was affected by any treatment. These results indicate that pigment intake, food access and parasite load can have complex and variable effects on color displays, and that feather and bill coloration signal different aspects of male condition.
Carotenoid pigments produce yellow, orange, and red integumentary color displays that can serve as reliable signals of health and condition. In many birds and fish, individuals gain competitive or mating advantages by ingesting and utilizing large quantities of carotenoid pigments. Carotenoid pigments serve as antioxidants, performing important functions as free-radical scavengers. The beneficial effects of carotenoid pigments are well documented, but rarely have researchers considered potential detrimental effects of high-level accumulation of carotenoids. We maintained American goldfinches (Carduelis tristis) on high- or low-carotenoid diets through molt and tested for damage to the liver and skeletal muscle. High intake of carotenoids had no measurable effect on liver enzymes but caused an increase in creatine kinase, an indicator of skeletal muscle breakdown, and a reduction in vertical flight performance, a measure of skeletal muscle integrity. The detrimental effects of high-level carotenoid accumulation were approximately equivalent to the negative effects of removing carotenoids from the diet. The adverse effects observed in this study have important implications for theories of the function and evolution of colorful plumage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.