Lansbery, Kristan L., Lauren C. Burcea, Margaretta L. Mendenhall, and Robert W. Mercer. Cytoplasmic targeting signals mediate delivery of phospholemman to the plasma membrane.
1. The gamma subunit is a specific component of the plasmalemmal Na(+),K(+)-ATPase. Like structurally related single-spanning membrane proteins such as cardiac phospholemman, Mat-8 and renal CHIF, large ion conductances are activated when gamma subunits are expressed in Xenopus oocytes. 2. Here we report critical properties of the gamma-activated conductance. The gamma-activated conductance showed non-selective cationic and anionic permeation, and extremely slow kinetics, with an activation time constant > 1 s following steps to -100 mV. 3. The gamma-activated conductance was inhibited by extracellular divalent ions including Ba(2+) (K(i) = 0.7 mM) and Ca(2+) (K(i) = 0.4 mM). 4. 2-Deoxyglucose (MW approximately 180), inulin (MW approximately 5000) and spermidine (MW approximately 148) efflux could occur through the gamma-activated conductance pathway, indicating a large pore diameter. In contrast, dextran-70 (MW approximately 70 000) did not pass through the gamma-activated channel, indicating an upper limit to the pore size of approximately 50 A (5 nm). 5. Similar conductances that are permeable to large molecules were activated by extreme hyperpolarization (> -150 mV) of uninjected oocytes. 6. We conclude that the Na(+),K(+)-ATPase gamma subunits activate Ca(2+)- and voltage-gated, non-selective, large diameter pores that are intrinsically present within the oocyte membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.