[1] We document geodetic strain across the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition to previously published campaign GPS points and leveling data and determine the pattern of interseismic coupling on the Main Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a combination of white and colored noise, in order to infer secular velocities at the stations with consistent uncertainties. We then locate the pole of rotation of the Indian plate in the ITRF 2005 reference frame at longitude = À 1.34 AE 3.31 , latitude = 51.4 AE 0.3 with an angular velocity of W = 0.5029 AE 0.0072 /Myr. The pattern of coupling on the MHT is computed on a fault dipping 10 to the north and whose strike roughly follows the arcuate shape of the Himalaya. The model indicates that the MHT is locked from the surface to a distance of approximately 100 km down dip, corresponding to a depth of 15 to 20 km. In map view, the transition zone between the locked portion of the MHT and the portion which is creeping at the long term slip rate seems to be at the most a few tens of kilometers wide and coincides with the belt of midcrustal microseismicity underneath the Himalaya. According to a previous study based on thermokinematic modeling of thermochronological and thermobarometric data, this transition seems to happen in a zone where the temperature reaches 350 C. The convergence between India and South Tibet proceeds at a rate of 17.8 AE 0.5 mm/yr in central and eastern Nepal and 20.5 AE 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT in the interseismic period accrues at a rate of 6.6 AE 0.4 Â 10 19 Nm/yr on the MHT underneath Nepal. For comparison, the moment released by the seismicity over the past 500 years, including 14 M W ≥ 7 earthquakes with moment magnitudes up to 8.5, amounts to only 0.9 Â 10 19 Nm/yr, indicating a large deficit of seismic slip over that period or very infrequent large slow slip events. No large slow slip event has been observed however over the 20 years covered by geodetic measurements in the Nepal Himalaya. We discuss the magnitude and return period of M > 8 earthquakes required to balance the long term slip budget on the MHT.
Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half‐space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half‐space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations.
The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.
We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree‐1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE‐derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE‐derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree‐1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE‐derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first‐order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.