An in vitro study was conducted to examine the influence of nonesterified fatty acids (NEFA) on bovine polymorphonuclear leukocytes (PMN). Eight healthy, midlactating Holstein cows were used as blood donors. Blood PMN were isolated and incubated with a mixture of NEFA, reflecting composition of bovine plasma NEFA at concentrations that were intended to mimic those found in blood of cows undergoing high, moderate, or low lipomobilization intensity (2, 1, 0.5, 0.25, 0.125, and 0.0625 mM). Control samples were incubated in absence of NEFA. Phagocytosis and oxidative burst activities were assessed by a 2-color flow cytometric method, which was based on oxidation of intracellular dihydrorhodamine 123 to green fluorescent rhodamine 123. Oxidative burst products were generated by incubating PMN with Staphylococcus aureus labeled with propidium iodide. A flow cytometric technique was used to detect PMN viability, necrosis, and apoptosis using fluorescein isothiocyanate-labeled annexin-V and propidium iodide. Phagocytic activity was not affected by NEFA. The highest concentration of NEFA (2 mM) was associated with a dramatic increase of phagocytosisassociated oxidative burst activities with a reduction in cell viability (48.0 vs. 97.5% in control samples) and with a marked increase of necrosis (49.4 vs. 0.5% in control samples). Conversely, the mixture of NEFA did not affect the occurrence of apoptosis. Enhancement of the oxidative burst associated with the highest concentration of NEFA might explain the reduced viability and higher percentage of necrosis observed under the same conditions. This study demonstrated a substantial resistance of bovine PMN to an overload of fatty acids. However, observation that the highest concentration of NEFA regulated some PMN functions encourages the possibility of in vivo studies to assess the rela-
During recent years, cell-based therapies using mesenchymal stem cells (MSC) are reported in equine veterinary medicine with increasing frequency. In most cases, the isolation and in vitro differentiation of equine MSC are described, but their proper immunophenotypic characterization is rarely performed. The lack of a single marker specific for MSC and the limited availability of monoclonal antibodies (mAbs) for equine MSC in particular, strongly hamper this research. In this study, 30 commercial mAbs were screened with flow cytometry for recognizing equine epitopes using the appropriate positive controls to confirm their specificity. Cross-reactivity was found and confirmed by confocal microscopy for CD45, CD73, CD79a, CD90, CD105, MHC-II, a monocyte marker, and two clones tested for CD29 and CD44. Unfortunately, none of the evaluated CD34 clones recognized the equine epitopes on positive control endothelial cells. Subsequently, umbilical cord blood-derived undifferentiated equine MSC of the fourth passage of six horses were characterized using multicolor flow cytometry based on the selected nine-marker panel of both cell surface antigens and intracytoplasmatic proteins. In addition, appropriate positive and negative controls were included, and the viable single cell population was analyzed by excluding dead cells using 7-aminoactinomycin D. Isolated equine MSC of the fourth passage were found to be CD29, CD44, CD90 positive and CD45, CD79a, MHC-II, and a monocyte marker negative. A variable expression was found for CD73 and CD105. Successful differentiation towards the osteogenic, chondrogenic, and adipogenic lineage was used as additional validation. We suggest that this selected nine-marker panel can be used for the adequate immunophenotyping of equine MSC. '
The aim of the present study was to develop a flow cytometric procedure for the quantification of the proportion of viable, apoptotic, and necrotic polymorphonuclear neutrophilic leukocytes (PMNL) isolated from both low- and high-somatic-cell-count quarter milk samples. Milk PMNL were differentiated from other cells by indirect fluorescent labeling using a primary anti-bovine granulocyte monoclonal antibody (CH138A) and an Alexa 647-labeled secondary antibody. Polymorphonuclear neutrophilic leukocytes were identified flow cytometrically based on their cytoplasmic granularity and CH138A-positivity. Additional labeling with annexin-V-fluorescein isothiocyanate and propidium iodide was used to determine milk PMNL viability. Thirty milk samples were run in parallel to assess the repeatability of the immunoassay and 6 repeated measurements per sample were performed to assess the instrument stability. Fluorescence microscopic verification of the CH138A staining pattern showed both a high sensitivity (90.9%) and specificity (92.3%). The combination of the side-scatter properties of granulated PMNL and CH138A-Alexa 647 positivity allows the distinction of labeled PMNL from other milk cells and particles that may bind nonspecifically, and from autofluorescent particles present in milk. Quantification of the proportion of PMNL and viable, apoptotic, and necrotic subpopulations in parallel samples gave repeatable results with concordance correlation coefficients varying between 0.93 and 0.99. The average coefficient of variation for repeated measurements in identical samples ranged between 4.2 and 9.7%. In conclusion, this is the first flow cytometric method suited for the simultaneous quantification of viable, apoptotic, and necrotic bovine milk PMNL in a straightforward manner.
Staphylococcus aureus is a major pathogen responsible for bovine mastitis, the most common and costly disease affecting dairy cattle. S. aureus naturally releases extracellular vesicles (EVs) during its growth. EVs play an important role in the bacteria-bacteria and bacteria-host interactions and are notably considered as nanocarriers that deliver virulence factors to the host tissues. Whether EVs play a role in a mastitis context is still unknown. In this work, we showed that S. aureus Newbould 305 (N305), a bovine mastitis isolate, has the ability to generate EVs in vitro with a designated protein content. Purified S. aureus N305-secreted EVs were not cytotoxic when tested in vitro on MAC-T and PS, two bovine mammary epithelial cell lines. However, they induced the gene expression of inflammatory cytokines at levels similar to those induced by live S. aureus N305. The in vivo immune response to purified S. aureus N305-secreted EVs was tested in a mouse model for bovine mastitis and their immunogenic effect was compared to that of live S. aureus N305, heat-killed S. aureus N305 and to S. aureus lipoteichoic acid (LTA). Clinical and histopathological signs were evaluated and pro-inflammatory and chemotactic cytokine levels were measured in the mammary gland 24 h post-inoculation. Live S. aureus induced a significantly stronger inflammatory response than that of any other condition tested. Nevertheless, S. aureus N305-secreted EVs induced a dose-dependent neutrophil recruitment and the production of a selected set of pro-inflammatory mediators as well as chemokines. This immune response elicited by intramammary S. aureus N305-secreted EVs was comparable to that of heat-killed S. aureus N305 and, partly, by LTA. These results demonstrated that S. aureus N305-secreted EVs induce a mild inflammatory response distinct from the live pathogen after intramammary injection. Overall, our combined in vitro and in vivo data suggest that EVs are worth to be investigated to better understand the S. aureus pathogenesis and are relevant tools to develop strategies against bovine S. aureus mastitis.
BackgroundMurine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages.MethodsIntraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level.ResultsMice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2.ConclusionsThe current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0860-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.