Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. ''Synthetic'' HZ (-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the crystal, -hematin had no inflammatory activity. In contrast, natural HZ from Plasmodium falciparum cultures was a potent TLR9 inducer. Natural HZ bound recombinant TLR9 ectodomain, but not TLR2. Both TLR9 stimulation and TLR9 binding of HZ were abolished by nuclease treatment. PCR analysis demonstrated that natural HZ is coated with malarial but not human DNA. Purified malarial DNA activated TLR9 but only when DNA was targeted directly to the endosome with a transfection reagent. Stimulatory quantities of natural HZ contain <1 g of malarial DNA; its potency in activating immune responses was even greater than transfecting malarial DNA. Thus, although the malarial genome is extremely AT-rich, its DNA is highly proinflammatory, with the potential to induce cytokinemia and fever during disease. However, its activity depends on being bound to HZ, which we propose amplifies the biological responses to malaria DNA by targeting it to a TLR9 ؉ intracellular compartment.fever ͉ immunomodulator ͉ parasitic diseases
Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.
TLR2 plays a key role in the initiation of the cellular innate immune responses by a wide range of bacterial products. TLRs signaling, including TLR2 and its coreceptors TLR1 and TLR6, is mediated by a number of specific ligands. Although many of the TLR-mediated cell signaling pathways have been elucidated in the past few years, the molecular mechanisms that lead to cell activation are still poorly understood. In this study, we investigate the interaction of PorB from Neisseria meningitidis with TLR2 and describe the direct binding of a bacterial protein to TLR2 for the first time. Using labeled PorB, we demonstrate its binding to TLR2 both in its soluble form in vitro, and when it is over-expressed on the surface of human embryonic kidney 293 cells. We also show that TLR2-mediated binding of PorB is directly related to cellular activation. In addition, using 293 cells expressing the chimeric TLR2/TLR1 and TLR2/TLR6 complexes, we report the selectivity of PorB binding to the TLR2/TLR1 heterodimer, which is required for initiating signaling in transfected 293 cells and in murine B cells. Together, these data provide new evidence that TLR2 recognizes PorB through direct binding, and that PorB-induced cell activation is mediated by a TLR2/TLR1 complex.
The detection of Gram-negative LPS depends upon the proper function of the TLR4-MD-2 receptor complex in immune cells. TLR4 is the signal transduction component of the LPS receptor, whereas MD-2 is the endotoxin-binding unit. MD-2 appears to activate TLR4 when bound to TLR4 and ligated by LPS. Only the monomeric form of MD-2 was found to bind LPS and only monomeric MD-2 interacts with TLR4. Monomeric MD-2 binds TLR4 with an apparent Kd of 12 nM; this binding avidity was unaltered in the presence of endotoxin. E5564, an LPS antagonist, appears to inhibit cellular activation by competitively preventing the binding of LPS to MD-2. Depletion of endogenous soluble MD-2 from human serum, with an immobilized TLR4 fusion protein, abrogated TLR4-mediated LPS responses. By determining the concentration of added-back MD-2 that restored normal LPS responsiveness, the concentration of MD-2 was estimated to be ∼50 nM. Similarly, purified TLR4-Fc fusion protein, when added to the supernatants of TLR4-expressing cells in culture, inhibited the interaction of MD-2 with TLR4, thus preventing LPS stimulation. The ability to inhibit the effects of LPS as a result of the binding of TLR4-Fc or E5564 to MD-2 highlights MD-2 as the logical target for drug therapies designed to pharmacologically intervene against endotoxin-induced disease.
SUMMARY Type I interferon (IFN) is an important host defense cytokine against intracellular pathogens, mainly viruses. In assessing IFN production in response to group B streptococcus (GBS), we find that IFN-β was produced by macrophages upon stimulation with both heat-killed and live GBS. Exposure of macrophages to heat-killed GBS activated a Toll-like receptor (TLR)-dependent pathway, whereas live GBS activated a TLR/NOD/RIG-like receptor (RLR)-independent pathway. This latter pathway required bacterial phagocytosis, proteolytic bacterial degradation, and phagolysosomal membrane destruction by GBS pore-forming toxins, leading to the release of bacterial DNA into the cytosol. GBS DNA in the cytosol induced IFN-β production via a pathway dependent on the activation of the serine-threonine kinase TBK1 and phosphorylation of the transcription factor IRF3. Thus, activation of IFN-α/-β production during infection with GBS, commonly considered an extracellular pathogen, appears to result from the interaction of GBS DNA with a putative intracellular DNA sensor or receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.