Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the
biosynthesis of melatonin and other N-acetylarylalkylamides
from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation
of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization
of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified
in D. melanogaster, in which AANATA differs from
AANATB by the truncation of 35 amino acids from the N-terminus. We
have expressed and purified both D. melanogaster AANAT
variants (AANATA and AANATB) in Escherichia coli and
used the purified enzymes to demonstrate that this N-terminal truncation
does not affect the activity of the enzyme. Subsequent characterization
of the kinetic and chemical mechanism of AANATA identified an ordered
sequential mechanism, with acetyl-CoA binding first, followed by tyramine.
We used a combination of pH–activity profiling and site-directed
mutagenesis to study prospective residues believed to function in
AANATA catalysis. These data led to an assignment of Glu-47 as the
general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism,
structure–function relationships, pH–rate profiles,
and site-directed mutagenesis, we propose a chemical mechanism for
AANATA.
Arylalkylamine N-acyltransferase-like 22 (AANATL2) from Drosophila melanogaster was expressed and shown to catalyze the formation of long-chain N-acylserotonins and N-acydopamines. Subsequent identification of endogenous amounts of N-acylserotonins and colocalization of these fatty acid amides and AANATL2 transcripts gives supporting evidence that AANATL2 has a role in the biosynthetic formation of these important cell signalling lipids.
Ceramides are important participants of signal transduction, regulating fundamental cellular processes. Here we report the mechanism for activation of p53 tumor suppressor by C16-ceramide. C16-ceramide tightly binds within the p53 DNA-binding domain (Kd ~ 60 nM), in close vicinity to the Box V motif. This interaction is highly selective toward the ceramide acyl chain length with its C10 atom being proximal to Ser240 and Ser241. Ceramide binding stabilizes p53 and disrupts its complex with E3 ligase MDM2 leading to the p53 accumulation, nuclear translocation and activation of the downstream targets. This mechanism of p53 activation is fundamentally different from the canonical p53 regulation through protein–protein interactions or posttranslational modifications. The discovered mechanism is triggered by serum or folate deprivation implicating it in the cellular response to nutrient/metabolic stress. Our study establishes C16-ceramide as a natural small molecule activating p53 through the direct binding.
Long-chain fatty acid amides are cell-signaling lipids identified in mammals and, recently, in invertebrates, as well. Many details regarding fatty acid amide metabolism remain unclear. Herein, we demonstrate that Drosophila melanogaster is an excellent model system for the study long-chain fatty acid amide metabolism as we have quantified the endogenous levels of N-acylglycines, N-acyldopamines, N-acylethanolamines, and primary fatty acid amides by LC/QTOF-MS. Growth of Drosophila melanogaster on media supplemented with [1-13C]-palmitate lead to a family of 13C-palmitate-labeled fatty acid amides in the fly heads. The [1-13C]-palmitate feeding studies provide insight into the biosynthesis of the fatty acid amides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.