NASP has been described as a histone H1 chaperone in mammals. However, the molecular mechanisms involved have not yet been characterized. Here, we show that this protein is not only present in mammals but is widely distributed throughout eukaryotes both in its somatic and testicular forms. The secondary structure of the human somatic version consists mainly of clusters of alpha-helices and exists as a homodimer in solution. The protein binds nonspecifically to core histone H2A-H2B dimers and H3-H4 tetramers but only forms specific complexes with histone H1. The formation of the NASP-H1 complexes is mediated by the N- and C-terminal domains of histone H1 and does not involve the winged helix domain that is characteristic of linker histones. In vitro chromatin reconstitution experiments show that this protein facilitates the incorporation of linker histones onto nucleosome arrays and hence is a bona fide linker histone chaperone.
SummaryThe tricellular junction (TCJ) forms at the convergence of bicellular junctions from three adjacent cells in polarized epithelia and is necessary for maintaining the transepithelial barrier. In the fruitfly Drosophila, the TCJ is generated at the meeting point of bicellular septate junctions. Gliotactin was the first identified component of the TCJ and is necessary for TCJ and septate junction development. Gliotactin is a member of the neuroligin family and associates with the PDZ protein discs large. Beyond this interaction, little is known about the mechanisms underlying Gliotactin localization and function at the TCJ. In this study, we show that Gliotactin is phosphorylated at conserved tyrosine residues, a process necessary for endocytosis and targeting to late endosomes and lysosomes for degradation. Regulation of Gliotactin levels through phosphorylation and endocytosis is necessary as overexpression results in displacement of Gliotactin away from the TCJ throughout the septate junction domain. Excessive Gliotactin in polarized epithelia leads to delamination, paired with subsequent migration, and apoptosis. The apoptosis and the resulting compensatory proliferation resulting from high levels of Gliotactin are mediated by the Drosophila JNK pathway. Therefore, Gliotactin levels within the cell membrane are regulated to ensure correct protein localization and cell survival.
Developing neuronal growth cones respond to a number of post‐transcriptionally modified guidance cues to establish functional neural networks. The Semaphorin family has well‐established roles as both secreted and transmembrane guidance cues. Here, we describe the first evidence that a transmembrane Semaphorin, Semaphorin 5B (Sema5B), is proteolytically processed from its transmembrane form and can function as a soluble growth cone collapsing guidance cue. Over‐expression of A Disintegrin and Metalloprotease (ADAM)‐17, results in an enhanced release of the Sema5B ectodomain, while removal of a predicted ADAM‐17 cleavage site prevents its release. In contrast, knockdown of ADAM‐17 does not significantly reduce Sema5B release, indicating there are additional unknown compensating proteases. This modulation of the transmembrane Sema5B to a diffusible cue represents a sophisticated method to regulate neuronal guidance in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.