Broadband stimulated Raman scattering (SRS) is often observed in applications that use nonlinear spectroscopy to probe the composition or dynamics of complex systems. Whether the SRS response is measured intentionally or unintentionally, as a background signal, the relative scattering intensities provide a quantitative measure of the population profile of target molecules. Solvent scattering is a valuable internal reference for determining absolute concentrations in these applications, but accurate cross sections have been reported for only a limited number of transitions in select solvents and were measured using spontaneous Raman scattering with narrowband continuous wave or nanosecond light sources. This work reports the measurement and analysis of absolute Raman scattering cross sections spanning the frequency range of 500–4000 cm–1 for cyclohexane, DMSO, acetonitrile, methanol, water, benzene, and toluene using broadband SRS with femtosecond and picosecond Raman pump pulses at 488 nm. Varying the duration of the Raman pump pulses from ∼80 fs to >1 ps confirms that the cross sections are independent of the spectral bandwidth across the range of ∼250 to <20 cm–1. The cross sections and depolarization ratios measured using broadband SRS agree with the limited number of previously reported values, after accounting for overlapping transitions in the lower-resolution femtosecond and picosecond spectra. The SRS cross sections reported here can be used with confidence as internal reference standards for a wide range of applications, including nonlinear spectroscopy and coherent microscopy measurements using ultrafast lasers.
Information on stress, reproductive fitness, and health is difficult to obtain in wild cetaceans but critical for conservation and management. The goal of this study was to develop a methodology requiring minimal blubber mass for analysis of reproductive and stress steroid hormones and, hence, suitable for cetacean biopsies. Blubber biopsies and samples were collected from free-ranging and stranded gray and fin whales. Steroid hormones were extracted from blubber samples as small as 50 mg using liquid-liquid extraction methodology developed to handle the high fat content of blubber. Samples were analyzed via liquid chromatography with tandem mass spectrometry for 10 hormones: aldosterone, androstenedione, cortisol, cortisone, corticosterone, 17β-estradiol, estrone, 17α-hydroxyprogesterone, progesterone, and testosterone. As part of the optimization, homogenization via bead beating and blade dispersion were compared, and the former found superior. To investigate optimal yet minimal tissue mass required, hormone panels were compared among paired 50, 150, and 400 mg samples, the latter two being commonly reported masses for hormone blubber analysis. Results indicated that 50 mg of blubber was suitable and sometimes superior. Additionally, significant differences in precision values were observed between species, possibly stemming from differences in blubber composition, and relevant to homogenization technique selection and calibration methods that use blubber matrix matches obtained from a species other than the study species. Based on recovery and precision values, our methodology was accurate and precise in the measurement of spiked known quantities for all 10 hormones, confirming the methodology capabilities in 50 mg blubber mass in both species. Altogether, and in our specific sample sets, all endogenous hormones, except corticosterone, were identified above the detection limit in 50 mg gray whale blubber samples while all endogenous hormones, except aldosterone, cortisone, estrone, and progesterone, were detected in 50 mg fin whale blubber samples. We present a robust methodology for the analysis of multiple reproductive and stress steroid hormones in minimal masses of cetacean blubber compatible with small biopsies. Finally, we identified statistically significant differences in corticosteroid concentrations between stranded and free ranging animals.
Resonance Raman spectroscopy probes the ultrafast dynamics of a diarylethene (DAE) molecular switch following excitation into the first two optical absorption bands. Mode-specific resonance enhancements for Raman excitation at visible (750–560 nm) and near-UV (420–390 nm) wavelengths compared with the calculated and experimental off-resonance Raman spectrum at 785 nm reveal different Franck–Condon active vibrations for the two electronically excited states. The resonance enhancements at visible wavelengths are consistent with initial motion on the first excited-state that promotes the cycloreversion reaction, whereas the enhancements for excitation at near-UV wavelengths highlight motions involving conjugated backbone and phenyl ring stretching modes that are orthogonal to the reaction coordinate. The results support a mechanism involving rapid internal conversion from the higher-lying state followed by cycloreversion on the first excited state. These observations provide new information about the reactivity of DAE derivatives following excitation in the visible and near-UV.
Some diarylethene molecular switches have a low quantum yield for cycloreversion when excited by a single photon, but react more efficiently following sequential two-photon excitation. The increase in reaction efficiency depends on both the relative time delay and the wavelength of the second photon. This paper examines the wavelength-dependent mechanism for sequential excitation using excited-state resonance Raman spectroscopy to probe the ultrafast (sub-30 fs) dynamics on the upper electronic state following secondary excitation. The approach uses femtosecond stimulated Raman scattering (FSRS) to measure the time-gated excited-state resonance Raman spectrum in resonance with two different excited-state absorption bands. The relative intensities of the Raman bands reveal the initial dynamics in the higher-lying states, Sn, by reporting on the relative gradients of the potential energy surfaces that are accessed via secondary excitation. The excited-state resonance Raman spectra reveal specific modes that become enhanced depending on the Raman excitation wavelength, 750 or 400 nm. Many of the modes that become enhanced in the 750 nm FSRS spectrum are assigned as vibrational motions localized on the central cyclohexadiene ring. Many of the modes that become enhanced in the 400 nm FSRS spectrum are assigned as motions along the conjugated backbone and peripheral phenyl rings. These observations are consistent with earlier measurements that showed higher efficiency following secondary excitation into the lower excited-state absorption band and illustrate a powerful new way to probe the ultrafast dynamics of higher-lying excited states immediately following sequential two-photon excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.