Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy.
The purpose of this study was to determine whether in vivo images of oral mucosa obtained with a fiber optic confocal reflectance microscope could be used to differentiate normal and neoplastic tissues. We imaged 20 oral sites in 8 patients undergoing surgery for squamous cell carcinoma. Normal and abnormal areas within the oral cavity were identified clinically, and real-time videos of each site were obtained in vivo using a fiber optic confocal reflectance microscope. Following imaging, each site was biopsied and submitted for histopathologic examination. We identified distinct features, such as nuclear irregularity and spacing, which can be used to qualitatively differentiate between normal and abnormal tissue. Representative confocal images of normal, pre-neoplastic, and neoplastic oral tissue are presented. Previous work using much larger microscopes has demonstrated the ability of confocal reflectance microscopy to image cellular and tissue architecture in situ. New advances in technology have enabled miniaturization of imaging systems for in vivo use.
This paper presents the use and characterization of an electrically focus tunable lens to perform axial scanning in a confocal microscope. Lateral and axial resolution are characterized over a >250 µm axial scan range. Confocal microscopy using optical axial scanning is demonstrated in epithelial tissue and compared to traditional stage scanning. By enabling rapid axial scanning, minimizing motion artifacts, and reducing mechanical complexity, this technique has potential to enhance in vivo threedimensional imaging in confocal endomicroscopy.
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use.
Abstract. Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16 × 16 mm 2 tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, <1 μm lateral and 3.5 μm axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.