Arginylation is an emerging posttranslational modification mediated by arginyltransferase (ATE1) that is essential for mammalian embryogenesis and regulation of the cytoskeleton. Here, we discovered that Ate1 knockout embryonic fibroblasts exhibit tumorigenic properties, including abnormally rapid contact-independent growth, reduced ability to form cell-cell contacts, and chromosomal aberrations. Ate1 knockout fibroblasts can form large colonies in Matrigel and exhibit invasive behavior, unlike wild type fibroblasts. Furthermore, Ate1 knockout cells form tumors in subcutaneous xenograft assays in immunocompromised mice. Abnormal growth in these cells can be partially rescued by reintroduction of stably expressed specific Ate1 isoforms, which also reduce the ability of these cells to form tumors. Tumor array studies and bioinformatics analysis show that Ate1 is down-regulated in several types of human cancer samples at the protein level, and that its transcription level inversely correlates with metastatic progression and patient survival. We conclude that Ate1 knockout results in carcinogenic transformation of cultured fibroblasts, suggesting that in addition to its previously known activities Ate1 gene is essential for tumor suppression and also likely participates in suppression of metastatic growth.
Polycomb Group (PcG) proteins are crucial for epigenetic inheritance of cell identity and are functionally conserved from Drosophila to humans. PcG proteins regulate expression of homeotic genes and are essential for axial body patterning during development. Earlier we showed that transcription factor YY1 functions as a PcG protein. YY1 also physically interacts with YAF2, a homolog of RYBP. Here we characterize the mechanism and physiologic relevance of this interaction. We found phenotypic and biochemical correction of dRYBP mutant flies by mouse YAF2 demonstrating functional conservation across species. Further biochemical analysis revealed that YAF2 bridges interaction between YY1 and the PRC1 complex. ChIP assays in HeLa cells showed that YAF2 is responsible for PcG recruitment to DNA, which is mediated by YY1 DNA binding. Knock-down of YY1 abrogated PcG recruitment, which was not compensated by exogenous YAF2 demonstrating that YY1 DNA binding is a priori necessary for Polycomb assembly on chromatin. Finally, we found that although YAF2 and RYBP regulate a similar number of Polycomb target genes, there are very few genes that are regulated by both implying functional distinction between the two proteins. We present a model of YAF2-dependent and independent PcG DNA recruitment by YY1.
Protein arginylation is an emerging post-translational modification that targets a number of metabolic enzymes, however the mechanisms and downstream effects of this modification are unknown. Here we show that lack of arginylation renders cells vulnerable to purine nucleotide synthesis inhibitors and affects the related glycine and serine biosynthesis pathways. We show that the purine nucleotide biosynthesis enzyme PRPS2 is selectively arginylated, unlike its close homologue PRPS1, and that arginylation of PRPS2 directly facilitates its biological activity. Moreover, selective arginylation of PRPS2 but not PRPS1 is regulated through a coding sequence-dependent mechanism that combines elements of mRNA secondary structure with lysine residues encoded near the N-terminus of PRPS1. This mechanism promotes arginylation-specific degradation of PRPS1 and selective retention of arginylated PRPS2 in vivo. We therefore demonstrate that arginylation affects both the activity and stability of a major metabolic enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.