The anthrax lethal factor (LF), a Zn-dependent endopeptidase, is considered the dominant virulence factor of anthrax. Because pharmacological inhibition of the catalytic activity of LF is considered a plausible mechanism for preventing the lethality of anthrax, a high-throughput screening experiment based on LF-catalyzed cleavage of a fluorescent substrate was performed to identify novel inhibitors of LF. The RNA-targeting antibiotics, neomycin B and some synthetic dimeric aminoglycosides, were found to be nanomolar active-site inhibitors of LF.
Many human cancers show constitutive or amplified expression of the transcriptional regulator and oncoprotein Myc, making Myc a potential target for therapeutic intervention. Here we report the down-regulation of Myc activity by reducing the availability of Max, the essential dimerization partner of Myc. Max is expressed constitutively and can form unstable homodimers. We have isolated stabilizers of the Max homodimer by applying virtual ligand screening (VLS) to identify specific binding pockets for small molecule interactors. Candidate compounds found by VLS were screened by fluorescence resonance energy transfer, and from these screens emerged a potent, specific stabilizer of the Max homodimer. In vitro binding assays demonstrated that the stabilizer enhances the formation of the Max-Max homodimer and interferes with the heterodimerization of Myc and Max in a dose-dependent manner. Furthermore, this compound interferes with Myc-induced oncogenic transformation, Myc-dependent cell growth, and Myc-mediated transcriptional activation. The Max-Max stabilizer can be considered a lead compound for the development of inhibitors of the Myc network.
Functional profiling technologies using arrayed collections of genome-scale siRNA and cDNA arrayed libraries enable the comprehensive global analysis of gene function. However, the current repertoire of high-throughput detection methodologies has limited the scope of cellular phenotypes that can be studied. In this report, we describe the systematic identification of mammalian growth-regulatory factors achieved through the integration of automated microscopy, pattern recognition analysis, and cell-based functional genomics. The effects of 7364 human and mouse proteins, encoded by individually arrayed cDNAs, upon proliferation and viability in U2OS osteosarcoma cells were evaluated in a live-cell, kinetic assay using quantitative image analysis. Overexpression of more than 86 cDNAs (1.15%) conferred dramatic increases in the proliferation, as determined cell enumeration. These included several known growth regulators, as well as previously uncharacterized ones (LRRK1, Ankrd25). In addition, novel functional roles for two genes (5033414D02Rik, 2810429O05Rik), now termed Gatp1 and Gatp2, respectively, were identified. Further analysis demonstrated that these encoded proteins promoted cellular proliferation and transformation in primary cells. Conversely, cells depleted for Gatp1 underwent apoptosis upon serum reduction, suggesting that Gatp1 is essential for cell survival under growth-factor-restricted conditions. Taken together, our findings offer new insight into the regulation of cellular growth and proliferation, and demonstrate the value and feasibility of assessing cellular phenotypes through genome-level computational image analysis
Potent library. Anthrax lethal factor (LF) is a zinc‐dependent metalloprotease involved in the rapid development of the deadly infection caused by Bacillus anthracis. Blocking its action is a plausible method to mitigate the deleterious effects of late stage infection. We report the inhibition of LF by tetrahydro‐isoquinoline polyphenolic compounds, such as 5 a, which were identified by screening a combinatorial library that was generated by Pictet–Spengler reaction. We also report the identification of commercially available polyphenolic inhibitors against LF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.