BackgroundThe nontherapeutic use of antibiotics in swine feed can select for antibiotic resistance in swine enteric bacteria. Leaking swine waste storage pits and the land-application of swine manure can result in the dispersion of resistant bacteria to water sources. However, there are few data comparing levels of resistant bacteria in swine manure–impacted water sources versus unaffected sources.ObjectivesThe goal of this study was to analyze surface water and groundwater situated up and down gradient from a swine facility for antibiotic-resistant enterococci and other fecal indicators.MethodsSurface water and groundwater samples (n = 28) were collected up and down gradient from a swine facility from 2002 to 2004. Fecal indicators were isolated by membrane filtration, and enterococci (n = 200) were tested for susceptibility to erythromycin, tetracycline, clindamycin, virginiamycin, and vancomycin.ResultsMedian concentrations of enterococci, fecal coliforms, and Escherichia coli were 4- to 33-fold higher in down-gradient versus up-gradient surface water and groundwater. We observed higher minimal inhibitory concentrations for four antibiotics in enterococci isolated from down-gradient versus up-gradient surface water and groundwater. Elevated percentages of erythromycin- (p = 0.02) and tetracycline-resistant (p = 0.06) enterococci were detected in down-gradient surface waters, and higher percentages of tetracycline- (p = 0.07) and clindamycin-resistant (p < 0.001) enterococci were detected in down-gradient groundwater.ConclusionsWe detected elevated levels of fecal indicators and antibiotic-resistant enterococci in water sources situated down gradient from a swine facility compared with up-gradient sources. These findings provide additional evidence that water contaminated with swine manure could contribute to the spread of antibiotic resistance.
The public health impact of the transmission of viruses in water is significant worldwide. Waterborne viruses can be introduced into our recreational and finished drinking water sources through a variety of pathways ultimately resulting in the onset of illness in a portion of the exposed population. Although there have been advances in both drinking water treatment technologies and source water protection strategies, waterborne disease outbreaks (WBDOs) due to viral pathogens still occur each year worldwide. By highlighting the prevalence of viral pathogens in water as well as (1) the dominant viruses of concern, (2) WBDOs due to viruses, and (3) available water treatment technologies, the goal of this review is to provide insight into the public health impact of viruses in water.
The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.