Urban development is the most common form of land conversion in the United States. Using a before-after control-impact study design, we investigated the effects of urbanization on larval and adult stages of southern two-lined salamanders (Eurycea cirrigera) and northern dusky salamanders (Desmognathus fuscus). Over 5 years, we estimated changes in occupancy and probabilities of colonization and survival in 13 stream catchments after urbanization and in 17 catchments that were not urbanized. We also examined effects of proportion of urbanized area in a catchment and distance of the salamander population to the nearest stream on probabilities of colonization and survival. Before urbanization, adult and larval stages of the two salamander species occupied nearly all surveyed streams, with occupancy estimates ranging from 1.0 to 0.78. Four years after urbanization mean occupancy of larval and adult two-lined salamanders had decreased from 0.87 and 0.78 to 0.57 and 0.39, respectively. Estimates of mean occupancy of larval northern dusky salamanders decreased from 1.0 to 0.57 in urban streams 4 years after urbanization; however, adult northern dusky salamander occupancy remained close to 1.0 in urban streams over 5 years. Occupancy estimates in control streams were similar for each species and stage over 5 years. Urbanization was associated with decreases in survival probabilities of adult and larval two-lined salamanders and decreases in colonization probabilities of larval dusky salamanders. Nevertheless, proportion of impervious surface and distance to nearest stream had little effect on probabilities of survival and colonization. Our results imply that in the evaluation of the effects of urbanization on species, such as amphibians, with complex life cycles, consideration of the effects of urbanization on both adult and larval stages is required.
ABSTRACT1. Many turtle species frequently suffer major injuries due to attempted predation or anthropogenic factors. Diamondback terrapins (Malaclemys terrapin) are one species known to be affected by anthropogenic activity, but little is known about the causes of injuries. In declining diamondback terrapin populations, learning more about causes and results of injuries can be helpful in developing sound management plans.2. Patterns of limb loss and major shell injuries were examined in a population of terrapins studied for 24 years at Kiawah Island, South Carolina to infer the causes and effects of injuries and possible predators on terrapins.3. The rate of shell injuries increased temporally, possibly as a result of increased watercraft activity. Because no differences in rates of limb loss were found between males and females, limb loss probably results from aquatic encounters (i.e. limb loss does not appear to be the result of terrestrial predation during nesting). Furthermore, males experienced reduced body condition when injured, and terrapins with a major injury had lower survivorship than uninjured terrapins.4. Therefore, in addition to reducing sources of mortality and protecting nesting habitat, measures to protect terrapins from watercraft activity may increase the survivorship of adult terrapins.
Because of their linear nature, streams provide a restrictive framework to understand the movement ecology of many animals. Stream movements have been characterized under two competing hypotheses. The colonization hypothesis dictates that small individuals experience passive drift, but concurrent, upstream movement by larger individuals replaces the loss of small individuals. Alternatively, the production hypothesis suggests that downstream movements are a consequence of limited resource availability. Previous research suggests that large larvae should move upstream and vice versa for small larvae, which should therefore be found downstream more often. We conducted a mark–recapture study of larval red salamanders ( Pseudotriton ruber (Sonnini de Manoncourt and Latreille, 1801)) to assess the validity of these hypotheses. We found that no larvae exhibited downstream movement (skew = 0.361, p = 0.019; biased upstream), and large larvae were the only size cohort to exhibit directional movement upstream (skew = 0.901, p = 0.035). Contrary to predictions under the colonization hypothesis, small larvae were found upstream more frequently than large larvae (N = 871, H = 16.29, df = 2, p < 0.001). Our results suggest that larval movements are related to abiotic stream conditions, and we conclude that neither hypothesis fully explains stream movement. In the absence of drift, new movement hypotheses are necessary to describe persistent upstream movement in streams. These hypotheses should consider individual causes of movement and the direction of movements that will improve the fitness of the organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.