The physiological characteristics of peritubular organic cation transport were examined by measuring the transport of the organic cation tetraethylammonium (TEA) in rabbit renal proximal tubule suspensions and isolated nonperfused rabbit renal proximal tubules. Peritubular organic cation transport in both single S2 segments and suspensions of isolated renal proximal tubules was found to be a high-capacity, high-affinity, carrier-mediated process. For tubule suspensions, the maximal capacity of the carrier for TEA (Jmax) and the concentration of TEA at 1/2 Jmax (Kt) (1.49 +/- 0.21 nmol.min-1.mg dry wt-1 and 131 +/- 16 microM, respectively), did not differ significantly from those measured in single S2 segments (Jmax, 1.16 +/- 0.075 nmol.min-1.mg dry wt-1; Kt, 108 +/- 10 microM). In addition, the pattern of inhibition of peritubular TEA transport by long-chain n-tetraalkylammonium compounds (n = 1-5) was both qualitatively and quantitatively similar in single S2 segments and tubule suspensions, exhibiting an increase in inhibitory potency with increasing alkyl chain length. For example, in tubule suspensions, apparent Michaelis constants for inhibition of TEA uptake ranged from 1.3 mM for tetramethylammonium (TMA) to 0.8 microM for tetrapentylammonium (TPeA). To determine whether these compounds were substrates for the peritubular organic cation transporter, their effect on the efflux of [14C]TEA from tubule suspensions was examined. A concentration of 0.5 mM of the short-chain tetraalkyls TMA or TEA increased the efflux of [14C]TEA (i.e., trans-stimulated) from tubules in suspension. The longer-chain tetraalkyls tetrapropylammonium, tetrabutylammonium, and TPeA all decreased the efflux of [14C]TEA from tubules in suspension; TPeA completely blocked efflux.(ABSTRACT TRUNCATED AT 250 WORDS)
The blood-testis barrier (BTB) prevents the entry of many xenobiotic compounds into seminiferous tubules thereby protecting developing germ cells. Understanding drug transport across the BTB may improve drug delivery into the testis. Members of one class of drug, nucleoside reverse transcriptase inhibitors (NRTIs), do penetrate the BTB, presumably through interaction with physiologic nucleoside transporters. By investigating the mechanism of nucleoside transport, it may be possible to design other drugs to bypass the BTB in a similar manner. We present a novel ex vivo technique to study transport at the BTB that employs isolated, intact seminiferous tubules. Using this system, we found that over 80% of total uptake by seminiferous tubules of the model nucleoside uridine could be inhibited by 100 nM nitrobenzylmercaptopurine riboside (NBMPR, 6-S-[(4-nitrophenyl)methyl]-6-thioinosine), a concentration that selectively inhibits equilibrative nucleoside transporter 1 (ENT1) activity. In primary cultured rat Sertoli cells, 100 nM NBMPR inhibited all transepithelial transport and basolateral uptake of uridine. Immunohistochemical staining showed ENT1 to be located on the basolateral membrane of human and rat Sertoli cells, whereas ENT2 was located on the apical membrane of Sertoli cells. Transepithelial transport of uridine by rat Sertoli cells was partially inhibited by the NRTIs zidovudine, didanosine, and tenofovir disoproxil fumarate, consistent with an interaction between these drugs and ENT transporters. These data indicate that ENT1 is the primary route for basolateral nucleoside uptake into Sertoli cells and a possible mechanism for nucleosides and nucleoside-based drugs to undergo transepithelial transport.
. Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol 287: F1021-F1029, 2004. First published July 6, 2004 doi:10.1152/ajprenal.00080.2004.-We investigated the regulation of organic anion transport driven by the organic anion transporter 3 (OAT3), a multispecific OAT localized at the basolateral membrane of the renal proximal tubule. PMA, a PKC activator, inhibited uptake of estrone sulfate (ES), a prototypic substrate for OAT3, in a dose-and time-dependent manner. This inhibition was reduced by 100 nM bisindoylmaleimide I (BIM), a specific PKC inhibitor. The ␣1-adrenergic receptor agonist phenylephrine also inhibited ES uptake, and this effect was reduced by BIM. These results suggest that PKC activation downregulates OAT3-mediated organic anion transport. In contrast, epidermal growth factor (EGF) increased ES uptake following activation of MAPK. Exposure to PGE2 or dibutyryl (db)-cAMP also enhanced ES uptake. Stimulation produced by PGE 2 and db-cAMP was prevented by the PKA inhibitor H-89, indicating that this stimulation required PKA activation. In addition, inhibition of cyclooxygenase 1 (COX1) (but not COX2) inhibited ES uptake. Furthermore, the stimulatory effect of EGF was eliminated by inhibition of either COX1 or PKA. These data suggest that EGF stimulates ES uptake by a process in which MAPK activation results in increased PGE 2 production that, in turn, activates PKA and subsequently stimulates ES uptake. Interestingly, EGF did not induce upregulation immediately following phenylephrine-induced downregulation; and phenylephrine did not induce downregulation immediately after EGF-induced upregulation. These data are the first to show the regulatory response of organic anion transport driven by OAT3 in intact renal proximal tubules.
. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Am J Physiol Renal Physiol 286: F774-F783, 2004. First published November 25, 2003 10.1152/ajprenal.00326.2003We recently showed that, in a proximal tubule cell line (opossum kidney cells), epithelial growth factor (EGF) stimulates basolateral organic anion transport (OAT) via ERK1/2, arachidonic acid, phospholipase A 2, and generation of prostaglandins. PGE2 binds the prostanoid receptor and, thus, activates adenylate cyclase and PKA, which stimulate basolateral organic anion uptake. In the present study, we investigated whether this regulatory cascade is also true 1) for ex vivo conditions in isolated renal proximal (S2) tubules from rabbit and 2) in a human renal epithelial cell line stably expressing human OAT1 (IHKE-hOAT1). EGF activated ERK1/2 in S2 tubules and IHKE-hOAT1, and, in both cases, inhibition of ERK activation (by U-0126) abolished this stimulation. In S2 tubules and IHKE-hOAT1, EGF led to an increase of organic anion uptake, which again was inhibited by U-0126. PGE 2 stimulated basolateral organic anion uptake in rabbit S2 tubules and IHKEhOAT1. EGF-and PGE 2-mediated stimulation of organic anion uptake was abolished by inhibition of PKA in rabbit S2 tubules and IHKE-hOAT1, respectively. We conclude that 1) stimulation of basolateral organic anion uptake by EGF or PGE 2 is a widespread (if not general) regulatory mechanism, 2) the signal transduction pathway involved seems to be general, 3) stimulation of basolateral organic anion uptake by EGF or PGE 2 is also present under ex vivo conditions and, thus, is not a cell culture artifact, 4) activation of OAT1 is sufficient to explain the stimulatory effects of EGF and PGE 2 in opossum kidney cells and rabbit S2 segments, and 5) stimulation of basolateral OAT1 by EGF or PGE 2 is also important in humans and, thus, may have clinical implications. basolateral transport; epithelial growth factor; extracellular signalregulated kinase 1/2; rabbit isolated proximal tubule; mitogen-activated protein kinase; mitogen-activated protein kinase kinase; IHKE cells; organic anion transport; phospholipase A 2; prostaglandin E2; protein kinase A; regulation THE ORGANIC ANION TRANSPORT (OAT) system of the renal proximal tubule plays a crucial role in the excretion of a variety of potentially toxic compounds (37,56). This system consists of organic anion exchanger(s) located at the basolateral membrane and a less well-characterized transport step at the apical membrane (18).The classical basolateral organic anion exchanger is the terminal step in a tertiary active transport system that is dependent on an inward-directed Na ϩ gradient to drive the uptake of ␣-ketoglutarate (␣-KG), which is then exchanged for organic anions (17,23,38,55). The basolateral exchanger for organic anions and dicarboxylates was cloned by three independent groups (46, 51, 58) in 1997 and named OAT1 (rat), ROAT1 (rat), and fROAT1 (winter flounde...
Multiple organic cation transporters (OCTs) are present in rabbit kidney and may play different functional roles. We cloned rabbit OCT2 (rbOCT2) and compared its function with that of rabbit OCT1 (rbOCT1). In transiently transfected COS-7 cells, rbOCT1 and rbOCT2 mediated uptake of [3H]tetraethylammonium (TEA) with K(t) values of 188 and 125 microM, respectively. n-Tetraalkylammonium compounds showed similar affinities for the two homologs, with IC50 values for inhibition of OCT1- and OCT2-mediated [3H]TEA transport, respectively, of 4,538 and 1,395 microM for tetramethylammonium, 88.5 and 3.9 microM for tetrapropylammonium, 13.9 and 5.3 microM for tetrabutylammonium, and 8.8 and 7.6 microM for tetrapentylammonium. However, the transporters had very different affinities for cimetidine (CIM): IC50 of 916 and 5.7 microM for rbOCT1 and rbOCT2, respectively. CIM inhibition of TEA uptake into single S2 segments of rabbit proximal tubule was used to estimate the contributions of OCT1 and OCT2 to basolateral organic cation uptake. The median IC50 for CIM inhibition of TEA uptake was 12.3 microM, suggesting that OCT2 is the major contributor to basolateral organic cation transport in the S2 segment of proximal tubule in rabbit kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.