Real-time forecasts of five landfalling Atlantic hurricanes during 2005 using the Advanced Research Weather Research and Forecasting (WRF) (ARW) Model at grid spacings of 12 and 4 km revealed performance generally competitive with, and occasionally superior to, other operational forecasts for storm position and intensity. Recurring errors include 1) excessive intensification prior to landfall, 2) insufficient momentum exchange with the surface, and 3) inability to capture rapid intensification when observed. To address these errors several augmentations of the basic community model have been designed and tested as part of what is termed the Advanced Hurricane WRF (AHW) model. Based on sensitivity simulations of Katrina, the inner-core structure, particularly the size of the eye, was found to be sensitive to model resolution and surface momentum exchange. The forecast of rapid intensification and the structure of convective bands in Katrina were not significantly improved until the grid spacing approached 1 km. Coupling the atmospheric model to a columnar, mixed layer ocean model eliminated much of the erroneous intensification of Katrina prior to landfall noted in the real-time forecast.
The influence of the direction of storm motion on the azimuthal distribution of electrified convection in 35 Atlantic basin tropical cyclones from 1985 to 1999 was examined using data from the National Lightning Detection Network. In the inner 100 km, flashes most often occurred in the front half of storms, with a preference for the right-front quadrant. In the outer rainbands (r ϭ 100-300 km), flashes occurred predominantly to the right of motion, although the maximum remained in the right-front quadrant. The results are shown to be consistent with previous studies of asymmetries in rainfall, radar reflectivity, and vertical motion with respect to tropical cyclone motion. The motion effect has been attributed to the influence of asymmetric friction in the tropical cyclone boundary layer. The authors previously found a strong signature in the azimuthal distribution of lightning with respect to vertical wind shear. Because both effects show clearly, vertical wind shear and storm motion must themselves be systematically related. It was found that more than three-quarters of 12-hourly periods contained a storm motion vector that was left of (i.e., counterclockwise from) the shear vector. These results support the importance of a downshear shift in the upper anticyclone, which produces motion left of shear for all directions of shear. The results are further broken down by direction of shear, and it is shown that the beta effect also plays a significant role in the relationship between motion and vertical wind shear. These results also suggest that substantial downshear tilt of the cyclonic part of the tropical cyclone vortex is uncommon, because that alone produces motion right of shear. The relative importance of asymmetric friction and vertical wind shear on the azimuthal asymmetry of convection was determined by examining circumstances in which the two effects would place maximum lightning in different quadrants. Without exception, the influence of vertical wind shear dominated the distribution. Although asymmetric friction creates vertical motion asymmetries at the top of the boundary layer, these apparently do not produce deep convection if vertical wind shear-induced circulations oppose them.
The influence of vertical wind shear on the azimuthal distribution of cloud-to-ground lightning in tropical cyclones was examined using flash locations from the National Lightning Detection Network. The study covers 35 Atlantic basin tropical cyclones from 1985-99 while they were over land and within 400 km of the coast over water. A strong correlation was found between the azimuthal distribution of flashes and the direction of the vertical wind shear in the environment. When the magnitude of the vertical shear exceeded 5 m s Ϫ1 , more than 90% of flashes occurred downshear in both the storm core (defined as the inner 100 km) and the outer band region (r ϭ 100-300 km). A slight preference for downshear left occurred in the storm core, and a strong preference for downshear right in the outer rainbands. The results were valid both over land and water, and for depression, storm, and hurricane stages. It is argued that in convectively active tropical cyclones, deep divergent circulations oppose the vertical wind shear and act to minimize the tilt. This allows the convection maximum to remain downshear rather than rotating with time. The downshear left preference in the core is stronger for hurricanes than for weaker tropical cyclones. This suggests that the helical nature of updrafts in the core, which is most likely for the small orbital periods of hurricanes, plays a role in shifting the maximum lightning counterclockwise from updraft initiation downshear. The downshear right maximum outside the core resembles the stationary band complex of Willoughby et al. and the rain shield of Senn and Hiser. The existence and azimuthal position of this feature appears to be controlled by the magnitude and direction of the vertical wind shear.
. The WWLLN cloud-to-ground detection efficiency is found to be strongly dependent on peak current and polarity, attaining values larger than 10% (35%) for currents stronger than ±35 kA (−130 kA) and values less than 2% for currents between 0 and −10 kA. The location accuracy is found to have a northward and westward bias, with average location errors of 4.03 km in the north-south and 4.98 km in the east-west directions, respectively. The WWLLN is shown to have strong limitations in capturing the diurnal cycle, missing both the timing of the maximum and minimum lightning activity (around 1600 and 0900 LT, respectively), and the amplitude of the cycle as well. It is found that in 3 h intervals, the number of flashes in the WWLLN has some proportionality to the number of flashes in the NLDN, suggesting that the WWLLN has strong potential for meteorological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.