alpha(1) Adrenergic receptors mediate both vascular and lower urinary tract tone, and alpha(1) receptor antagonists such as terazosin (1b) are used to treat both hypertension and benign prostatic hyperplasia (BPH). Recently, three different subtypes of this receptor have been identified, with the alpha(1A) receptor being most prevalent in lower urinary tract tissue. This paper explores 4-aryldihydropyrimidinones attached to an aminopropyl-4-arylpiperidine via a C-5 amide as selective alpha(1A) receptor subtype antagonists. In receptor binding assays, these types of compounds generally display K(i) values for the alpha(1a) receptor subtype <1 nM while being greater than 100-fold selective versus the alpha(1b) and alpha(1d) receptor subtypes. Many of these compounds were also evaluated in vivo and found to be more potent than terazosin in both a rat model of prostate tone and a dog model of intra-urethral pressure without significantly affecting blood pressure. While many of the compounds tested displayed poor pharmacokinetics, compound 48 was found to have adequate bioavailability (>20%) and half-life (>6 h) in both rats and dogs. Due to its selectivity for the alpha(1a) over the alpha(1b) and alpha(1d) receptors as well as its favorable pharmacokinetic profile, 48 has the potential to relieve the symptoms of BPH without eliciting effects on the cardiovascular system.
In an effort to discover potent, clinically useful thrombin inhibitors, a rapid analogue synthetic approach was used to explore the P(1) region. Various benzylamines were coupled to a pyridine/pyrazinone P(2)-P(3) template. One compound with an o-thiadiazole benzylic substitution was found to have a thrombin K(i) of 0.84 nM. A study of ortho-substituted five-membered-ring heterocycles was undertaken and subsequently demonstrated that the o-triazole and tetrazole rings were optimal. Combination of these potent P(1) aryl heterocycles with a variety of P(2)-P(3) groups produced a compound with an extraordinary thrombin inhibitory activity of 1.4 pM. It is hoped that this potency enhancement in P(1) will allow for more diversification in the P(2)-P(3) region to ultimately address additional pharmacological concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.