We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, $ 74, and $ 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (C live ) was low in the 1-and 6-year-old stands, and increased following a logistic pattern to high levels in the 74-and 154-year-old stands. Carbon stocks in the forest floor (C forest floor ) and coarse woody debris (C CWD ) were comparatively high in the 1-year-old stand, reduced in the 6-through 40-year-old stands, and highest in the 74-and 154-year-old stands. Total net primary production (TNPP) was reduced in the 1-and 6-year-old stands, highest in the 23-through 74-year-old stands and somewhat reduced in the 154-year-old stand. The NPP decline at the 154-year-old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1-and 6-year-old stands were losing carbon, the 15-year-old stand was gaining a small amount of carbon, the 23-and 74-year-old stands were gaining considerable carbon, and the 40-and 154-year-old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6-and 15-year-old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154-year-old stand appears related to increased losses from C live by tree mortality and possibly from C forest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands.
The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly-sandy lowlands on ice-poor eolian sand and (4) peaty-silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly-sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty-silty lowlands, 2-4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly-sandy lowlands in response to fire and lake drainage, over decades to centuries in Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1 1748-9326/13/035017+13$33.00 c 2013 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 8 (2013) 035017 M Torre Jorgenson et al peaty-silty lowlands with a legacy of complicated Holocene changes, and over centuries in silty uplands where ice-rich soil and ecological recovery protect permafrost.
Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a welldrained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to $116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ± 21 g m )2 (mean ± 1SE) and vascular ANPP had recovered to 138 ± 32 g m )2 y )1 , which was not different than that of a nearby unburned stand (160 ± 48 g m )2 y )1 ) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ± 180 (dry) and 4008 ± 233 g m )2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ± 68 g m )2 y )1 in the mature site, but in the dry chronosequence it peaked at 410 ± 43 g m )2 y )1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls over these factors will help predict how changes in climate and fire regime will affect the carbon balance of Interior Alaska.Electronic supplementary material The online version of this article
Permafrost peatlands store one-third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high-latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (<10 years) to old (>100 years) from two interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to ~30% of the initial forest C stock and is directly proportional to the prethaw C stocks. Our model results indicate that permafrost thaw turned these peatlands into net C sources to the atmosphere for a decade following thaw, after which post-thaw bog peat accumulation returned sites to net C sinks. It can take multiple centuries to millennia for a site to recover its prethaw C stocks; the amount of time needed for them to regain their prethaw C stocks is governed by the amount of C that accumulated prior to thaw. Consequently, these findings show that older peatlands will take longer to recover prethaw C stocks, whereas younger peatlands will exceed prethaw stocks in a matter of centuries. We conclude that the loss of sporadic and discontinuous permafrost by 2100 could result in a loss of up to 24 Pg of deep C from permafrost peatlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.