Aptasensors utilize aptamers as bioreceptors. Aptamers are highly efficient, have a high specificity and are reusable. Within the biosensor the aptamers are immobilized to maximize their access to target molecules. Knowledge of the orientation and location of the aptamer and peptide during binding could be gained through computational modeling. Experimentally, the aptamer (anti-MUC1 S2.2) has been identified as a bioreceptor for breast cancer biomarker mucin 1 (MUC1) protein. However, within this protein lie several peptide variants with the common sequence APDTRPAP that are targeted by the aptamer. Understanding orientation and location of the binding region for a peptide-aptamer complex is critical in their biosensor applicability. In this study, we investigate through computational modeling how this peptide sequence and its minor variants affect the peptide-aptamer complex binding. We use molecular dynamics simulations to study multiple peptide-aptamer systems consisting of MUC1 (APDTRPAP) and MUC1-G (APDTRPAPG) peptides with the anti-MUC1 aptamer under similar physiological conditions reported experimentally. Multiple simulations of the MUC1 peptide and aptamer reveal that the peptide interacts between 3' and 5' ends of the aptamer but does not fully bind. Multiple simulations of the MUC1-G peptide indicate consistent binding with the thymine loop of the aptamer, initiated by the arginine residue of the peptide. We find that the binding event induces structural changes in the aptamer by altering the number of hydrogen bonds within the aptamer and establishes a stable peptide-aptamer complex. In all MUC1-G cases the occurrence of binding was confirmed by systematically studying the distance distributions between peptide and aptamers. These results are found to corroborate well with experimental study reported in the literature that indicated a strong binding in the case of MUC1-G peptide and anti-MUC1 aptamer. Present MD simulations highlight the role of the arginine residue of MUC1-G peptide in initiating the binding. The addition of the glycine residue to the peptide, as in the case of MUC1-G, is shown to yield a stable binding. Our study clearly demonstrates the ability of MD simulations to obtain molecular insights for peptide-aptamer binding, and to provide details on the orientation and location of binding between the peptide-aptamer that can be instrumental in biosensor development.
Background and Objectives Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. Methodology Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. Results By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies > 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. Conclusions This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. Lay summary We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.