Elevations of sperm Ca 2؉ seem to be responsible for an asymmetric form of motility called hyperactivation, which is first seen near the time of fertilization. The mechanism by which intracellular Ca 2؉ concentrations increase remains unknown despite considerable investigation. Although several prototypical voltage-gated calcium channels are present in spermatozoa, they are not essential for motility. Furthermore, the forward velocity and percentage of motility of spermatozoa are associated with infertility, but their importance relative to hyperactivation also remains unknown. We show here that disruption of the gene for a recently described sperm-specific voltage-gated cation channel, CatSper2, fails to significantly alter sperm production, protein tyrosine phosphorylation that is associated with capacitation, induction of the acrosome reaction, forward velocity, or percentage of motility, yet CatSper2 ؊͞؊ males are completely infertile. The defect that we identify in the null sperm cells is a failure to acquire hyperactivated motility, which seems to render spermatozoa incapable of generating the ''power'' needed for penetration of the extracellular matrix of the egg. A loss of power is suggested also by experiments in which the viscosity of the medium was increased after incubation of spermatozoa in normal capacitating conditions. In highviscosity medium, CatSper2-null spermatozoa lost the ability to swim forward, whereas wild-type cells continued to move forward. Thus, CatSper2 is responsible for driving hyperactivated motility, and, even with typical sperm forward velocities, fertilization is not possible in the absence of this highly active form of motility.hyperactivation ͉ spermatozoa ͉ infertility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.