There have been many attempts to use anionic hydrogels as oral protein delivery carriers because of their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) and poly(methacrylic acid-g-ethylene glycol) hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation M t /M ϱ ϭ kt n (where M t is the mass of water absorbed at time t and M ϱ is the mass of water absorbed at equilibrium) was used to calculate the exponent (n) describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in a swelling medium of pH 7.0, which was higher than pK a of the gels. The experimental results of the time-dependent swelling behaviors of the gels were analyzed with several mathematical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.