Few empirical studies have quantified relationships between changing weather and migratory songbirds, but such studies are vital in a time of rapid climate change. Climate change has critical consequences for avian breeding ecology, geographic ranges, and migration phenology. Changing precipitation and temperature patterns affect habitat, food resources, and other aspects of birds’ life history strategies. Such changes may disproportionately affect species confined to rare or declining ecosystems, such as temperate grasslands, which are among the most altered and endangered ecosystems globally. We examined the influence of changing weather on the dickcissel (Spiza americana), a migratory songbird of conservation concern that is an obligate grassland specialist. Our study area in the North American Great Plains features high historic weather variability, where climate change is now driving higher precipitation and temperatures as well as higher frequencies of extreme weather events including flooding and droughts. Dickcissels share their breeding grounds with brown-headed cowbirds (Molothrus ater), brood parasites that lay their eggs in the nests of other songbirds, reducing dickcissel productivity. We used 9 years of capture-recapture data collected over an 18-year period to test the hypothesis that increasing precipitation on dickcissels’ riparian breeding grounds is associated with abundance declines and increasing vulnerability to cowbird parasitism. Dickcissels declined with increasing June precipitation, whereas cowbirds, by contrast, increased. Dickcissel productivity appeared to be extremely low, with a 3:1 ratio of breeding male to female dickcissels likely undermining reproductive success. Our findings suggest that increasing precipitation predicted by climate change models in this region may drive future declines of dickcissels and other songbirds. Drivers of these declines may include habitat and food resource loss related to flooding and higher frequency precipitation events as well as increased parasitism pressure by cowbirds. Positive correlations of June-July precipitation, temperature, and time since grazing with dickcissel productivity did not mitigate dickcissels’ declining trend in this ecosystem. These findings highlight the importance of empirical research on the effects of increasing precipitation and brood parasitism vulnerability on migratory songbird conservation to inform adaptive management under climate change.
New World wood warblers (Parulidae) represent one of the most dramatic adaptive radiations in North America. However, the ecological bases for the morphological differences among these species remain poorly understood, especially considering how many foraging and habitat studies the family has inspired. We hypothesized the existence of relationships between parulid morphology and diet. We combined a principal component analysis (PCA) of 18 external morphological traits of 11 species of warblers with stomach-content data from coexisting species in one breeding community in Louisiana and three wintering communities in Jamaica. The primary morphological differences, corresponding with the first three PCA axes, were body size, morphological adaptations for aerial foraging versus gleaning, and arboreal versus groundforaging adaptations. Our analysis revealed little morphological overlap among the 11 species. Differences in diet among the warblers showed a significant relationship to the first two PCA axes of morphological traits. For five coexisting, foliage-gleaning species wintering in Jamaican wet limestone forest, larger warblers ate larger beetles and Orthopterans but not larger ants. In analyses including all four communities, species of warblers with aerial foraging morphologies consumed a greater proportion of winged insects than other warbler species. These findings document prey selection relevant to multiple subtle morphological differences among coexisting species. Overall, our results indicate that food and foraging have likely played an integral role in the morphological diversification and coexistence of species in the family Parulidae.
Among the most rapidly declining birds in continental North America, grassland birds evolved with American bison (Bison bison) until bison nearly became extinct due to overhunting. Bison populations have subsequently rebounded due to reintroductions on conservation lands, but the impacts of bison on grassland nesting birds remain largely unknown. We investigated how bison reintroduction, together with other land management and climate factors, affected breeding populations of a grassland bird species of conservation concern, the Bobolink (Dolichonyx oryzivorus). We quantified population changes in Bobolinks over an 18-year period in conservation grasslands where bison were reintroduced, compared with adjacent grasslands grazed by cattle and where hay was harvested after the bird breeding season. Four years after bison reintroduction, the bison population in the study area had doubled, while Bobolink abundance declined 62% and productivity declined 84%. Our findings suggest that bison reintroduction as a conservation strategy may be counterproductive in grassland fragments where overgrazing, trampling, and other negative impacts drive declines in grassland breeding birds. Where bird conservation is an objective, small grassland reserves may therefore be inappropriate sites for bison reintroduction. To maximize conservation benefits to birds, land managers should prioritize protecting grassland birds from disturbance during the bird breeding season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.