Fluidic transport through nanochannels offers new opportunities to probe fundamental nanoscale transport phenomena and to develop tools for manipulating DNA, proteins, small molecules and nanoparticles. The small size of nanofabricated devices and the accompanying increase in the effect of surface forces, however, pose challenges in designing and fabricating flexible nanofluidic systems that can dynamically adjust their transport characteristics according to the handling needs of various molecules and nanoparticles. Here, we describe the use of nanoscale fracturing of oxidized poly(dimethylsiloxane) to conveniently fabricate nanofluidic systems with arrays of nanochannels that can actively manipulate nanofluidic transport through dynamic modulation of the channel cross-section. We present the design parameters for engineering material properties and channel geometry to achieve reversible nanochannel deformation using remarkably small forces. We demonstrate the versatility of the elastomeric nanochannels through tuneable sieving and trapping of nanoparticles, dynamic manipulation of the conformation of single DNA molecules and in situ photofabrication of movable polymeric nanostructures.
The interface between extracellular matrices and cells is a dynamic environment that is crucial for regulating important cellular processes such as signal transduction, growth, differentiation, motility and apoptosis. In vitro cellular studies and the development of new biomaterials would benefit from matrices that allow reversible modulation of the cell adhesive signals at a scale that is commensurate with individual adhesion complexes. Here, we describe the fabrication of substrates containing arrays of cracks in which cell-adhesive proteins are selectively adsorbed. The widths of the cracks (120-3,200 nm) are similar in size to individual adhesion complexes (typically 500-3,000 nm) and can be modulated by adjusting the mechanical strain applied to the substrate. Morphology of cells can be reversibly manipulated multiple times through in situ adjustment of crack widths and hence the amount of the cell-adhesive proteins accessible to the cell. These substrates provide a new tool for assessing cellular responses associated with exposure to matrix proteins.
Surface-modification of the elastomer poly(dimethylsiloxane) by exposure to oxygen plasma for four minutes creates a thin, stiff film. In this study, the thickness and mechanical properties of this surface-modified layer were determined. Using the phase image capabilities of a tapping-mode atomic-force microscope, the surface-modified region was distinguished from the bulk PDMS; specifically, it suggested a graded surface layer to a depth of about 200 nm. Load-displacement data for elastic indentation using a compliant AFM cantilever was analyzed as a plate bending on an elastic foundation to determine the elastic modulus of the surface (37 MPa). An applied uniaxial strain generated a series of parallel nano-cracks with spacing on the order of a few microns. Numerical analyses of this cracking phenomenon showed that the depth of these cracks was in the range of 300-600 nm and that the surface layer was extremely brittle, with its toughness in the range of 0.1-0.3 J/m(2).
A direct fabrication method capable of producing fully-reversible, tunable nanochannel arrays, without the use of a molding step, is described. It is based on tunnel cracking of a readily-prepared brittle layer constrained between elastomeric substrates. The resulting nanochannels have adjustable cross-sections that can be reversibly opened, closed, widened and narrowed merely by applying and removing tensile strains to the substrate. This permits reversible trapping and release of nanoparticles, and easy priming or unclogging of the nanochannels for user-friendly and robust operations. The ease of fabrication and operation required to open and close the nanochannels is superior to previous approaches.
It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.