Study design/methods Review article. Objectives The goal of this article is to review the available evidence for computerized navigation and robotics as an accuracy improvement tool for spinal deformity surgery, as well as to consider potential complications, impact on clinical outcomes, radiation exposure, and costs. Summary of background data/results Pedicle screw and rod construct are widely utilized for posterior spinal fixation in spinal deformity correction. Freehand placement of pedicle screws has long been utilized, although there is variable potential for inaccuracy depending on surgeon skill and experience. Malpositioned pedicle screws may have significant clinical implications ranging from nerve root irritation, inadequate fixation, CSF leak, perforation of the great vessels, or spinal cord damage. Computer-based navigation and robotics systems were developed to improve pedicle screw insertion accuracy and consistency, and decrease the risk of malpositioned pedicle fixation. The available evidence suggests that computer-based navigation and robotic-assisted guidance systems for pedicle cannulation are at least equivalent, and in several reports superior, to freehand techniques in terms of accuracy. CT and robotic navigation systems do appear to decrease radiation exposure to the operative team in some reports. Published reports do indicate longer operative times with use of robotic navigation compared with traditional freehand techniques for pedicle screw placement. To date, there is no conclusive evidence that use of CT or robotic navigation has any measurable impact on patient outcomes or overall complication reduction. There are theoretical advantages with robotic and CT navigation in terms of both speed and accuracy for severe spinal deformity or complex revision cases, however, there is a need for studies to investigate this technology in these specific cases. There is no evidence to date demonstrating the cost effectiveness of CT or robotic navigation as compared with traditional pedicle cannulation techniques. Conclusions The review of available evidence suggests that computer-based navigation and robotic-assisted guidance systems for pedicle cannulation are at least equivalent, and in several reports superior, to freehand techniques in terms of radiographic accuracy. There is no current clinical evidence that the use of navigation or robotic techniques leads to improved patient outcomes or decreased overall complications or reoperation rates, and the use of these systems may substantially increase surgical costs. Level of evidence V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.