Cues associated with rewards acquire the ability to engage the same brain systems as rewards themselves. However, reward cues have multiple properties. For example, they not only act as predictors of reward capable of evoking conditional responses (CRs), but they may also acquire incentive motivational properties. As incentive stimuli they can evoke complex emotional and motivational states. Here we sought to determine whether the predictive value of a reward cue is sufficient to engage brain reward systems, or whether the cue must also be attributed with incentive salience. We took advantage of the fact that there are large individual differences in the extent to which reward cues are attributed with incentive salience. When a cue (conditional stimulus, CS) is paired with delivery of food (unconditional stimulus, US), the cue acquires the ability to evoke a CR in all rats; that is, it is equally predictive and supports learning the CS-US association in all. However, only in a subset of rats is the cue attributed with incentive salience, becoming an attractive and desirable incentive stimulus. We used in situ hybridization histochemistry to quantify the ability of a food cue to induce c-fos mRNA expression in rats that varied in the extent to which they attributed incentive salience to the cue. We found that a food cue induced c-fos mRNA in the orbitofrontal cortex, striatum (caudate and nucleus accumbens), thalamus (paraventricular, intermediodorsal and central medial nuclei) and lateral habenula, only in rats that attributed incentive salience to the cue. Furthermore, patterns of “connectivity” between these brain regions differed markedly between rats that did or did not attribute incentive salience to the food cue. These data suggest that the predictive value of a reward cue is not sufficient to engage brain reward systems - the cue must also be attributed with incentive salience.
When drugs enter the brain rapidly, liability for addiction is increased, but why this is the case is not well understood. Here we examined the influence of varying the speed of intravenous cocaine delivery on self-administration behavior in rats given limited or extended opportunity to take drug. The speed of cocaine delivery had no effect on self-administration behavior when rats were given only 1 h each day to take cocaine. When given sixfold more time to take cocaine, rats that received cocaine rapidly (5-45 s) increased their total intake eightfold. However, rats that received cocaine more slowly (Ͼ90 s) did not avail themselves of the opportunity to take much more drug: they increased their intake only twofold. Furthermore, when tested 45 d after the last self-administration session, a drug-priming injection reinstated drug-seeking behavior only in rats that in the past had cocaine injected rapidly (5 s), and this was associated with a persistent suppression in the ability of cocaine to induce immediate early gene expression. Cocaine may be potentially more addictive when it reaches the brain rapidly because (1) this promotes a marked escalation in intake and (2) it renders individuals more susceptible to relapse long after the discontinuation of drug use. This is presumably because the rapid uptake of drug to the brain preferentially promotes persistent changes in brain systems that regulate motivation for drug, and continuing exposure to large amounts of drug produces a vicious cycle of additional maladaptive changes in brain and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.