Certain forms of hexavalent chromium [Cr(VI)] are known respiratory carcinogens that induce a broad spectrum of DNA damage. Cr(VI)-carcinogenesis may be initiated or promoted through several mechanistic processes including, the intracellular metabolic reduction of Cr(VI) producing chromium species capable of interacting with DNA to yield genotoxic and mutagenic effects, Cr(VI)-induced inflammatory/immunological responses, and alteration of survival signaling pathways. Cr(VI) enters the cell through nonspecific anion channels, and is metabolically reduced by agents including ascorbate, glutathione, and cysteine to Cr(V), Cr(IV), and Cr(III). Cr(III) has a weak membrane permeability capacity and is unable to cross the cell membrane, thereby trapping it within the cell where it can bind to DNA and produce genetic damage leading to genomic instability. Structural genetic lesions produced by the intracellular reduction of Cr(VI) include DNA adducts, DNA strand breaks, DNA-protein crosslinks, oxidized bases, abasic sites, and DNA inter-and intrastrand crosslinks. The damage induced by Cr(VI) can lead to dysfunctional DNA replication and transcription, aberrant cell cycle checkpoints, dysregulated DNA repair mechanisms, microsatelite instability, inflammatory responses, and the disruption of key regulatory gene networks responsible for the balance of cell survival and cell death, which may all play an important role in Cr(VI) carcinogenesis. Several lines of evidence have indicated that neoplastic progression is a result of consecutive genetic/epigenetic changes that provide cellular survival advantages, and ultimately lead to the conversion of normal human cells to malignant cancer cells. This review is based on studies that provide a glimpse into Cr(VI) carcinogenicity via mechanisms including Cr(VI)-induced death-resistance, the involvement of DNA repair mechanisms in survival after chromium exposure, and the activation of survival signaling cascades in response to Cr(VI) genotoxicity.
Apoptosis-resistance and metabolic imbalances are prominent features of cancer cells. We have recently reported on populations of human fibroblasts that exhibit resistance to mitochondrial-mediated apoptosis, acquired as a result of a single genotoxic exposure. The objective of the present study was to investigate the intrinsic bioenergetic profile of the death-resistant cells, as compared to the clonogenic control cells. Therefore, we analyzed the basic bioenergetic parameters including oxygen consumption and extracellular acidification rates, coupling efficiency, and spare respiratory capacity. Our data demonstrate a strong correlation between enhanced spare respiratory capacity and death-resistance, which we postulate to be indicative of the earliest stages of carcinogenesis
BackgroundOver one million men undergo prostate biopsies annually in the United States, a majority of whom due to elevated serum PSA. More than half of the biopsies turn out to be negative for prostate cancer (CaP). The limitations of both the PSA test and the biopsy procedure have led to the development for more precise CaP detection assays in urine (e.g., PCA3, TMPRSS2‐ERG) or blood (e.g., PHI, 4K). Here, we describe the development and evaluation of the Urine CaP Marker Panel (UCMP) assay for sensitive and reproducible detection of CaP cells in post‐digital rectal examination (post‐DRE) urine.MethodsThe cellular content of the post‐DRE urine was captured on a translucent filter membrane, which is placed on Cytoclear slides for direct evaluation by microscopy and immuno‐cytochemistry (ICC). Cells captured on the membrane were assayed for PSA and Prostein expression to identify prostate epithelial cells, and for ERG and AMACR to identify prostate tumor cells. Immunostained cells were analyzed for quantitative and qualitative features and correlated with biopsy positive and negative status for malignancy.ResultsThe assay was optimized for single cell capture sensitivity and downstream evaluations by spiking a known number of cells from established CaP cell lines, LNCaP and VCaP, into pre‐cleared control urine. The cells captured from the post‐DRE urine of subjects, obtained prior to biopsy procedure, were co‐stained for ERG, AMACR (CaP specific), and Prostein or PSA (prostate epithelium specific) rendering a whole cell based analysis and characterization. A feasibility cohort of 63 post‐DRE urine specimens was assessed. Comparison of the UCMP results with blinded biopsy results showed an assay sensitivity of 64% (16 of 25) and a specificity of 68.8% (22 of 32) for CaP detection by biopsy.ConclusionsThis pilot study assessing a minimally invasive CaP detection assay with single cell sensitivity cell‐capture and characterization from the post‐DRE urine holds promise for further development of this novel assay platform. Prostate 75: 969–975, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.
Polo-like kinase 1 (Plk1) is a key regulator of mitosis. Aberrant Plk1 activity is found in tumors, but little is known regarding its role in the DNA damage response of normal cells and its potential contribution to the early stages of carcinogenesis. Inappropriate survival signaling after DNA damage may facilitate clonal expansion of genetically compromised cells, and it is known that protein tyrosine phosphatase (PTP) inhibitors activate key survival pathways. In this study, we employed hexavalent chromium [Cr(VI)], a well-documented genotoxicant, to investigate the mechanism by which survival pathway activation could lead to loss of checkpoint control via a mechanism involving Plk1. We recently reported that PTP inhibition enhances clonogenic survival and mutagenesis after Cr(VI) exposure by overriding Cr-induced growth arrest. Here, we report that checkpoint bypass, facilitated by PTP inhibition, was associated with decreased Cdk1 Tyr15 phosphorylation, as well as increased Plk1 activity and nuclear localization. Plk1 was necessary for increased survival after PTP inhibition and Cr(VI) exposure in normal human fibroblasts via enhanced mitotic progression. In addition, pharmacological inhibition of Plk1 abolished the PTP inhibitor-induced bypass of the G(2)/M checkpoint. Notably, Plk1 overexpression increased survival and mutagenesis after Cr(VI) exposure in wild-type Saccharomyces cerevisiae. Taken together, our data indicate that Plk1 activation and nuclear localization are necessary for PTP-regulated mitotic progression after DNA damage. Our studies highlight a role for Plk1 in the loss of checkpoint control, increased survival and mutagenesis after genotoxic exposure in normal cells, which in turn may lead to genomic instability and carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.