Outcomes from tail suspension and marble burying tests reveal that THC withdrawal is multifaceted, eliciting and suppressing behaviors in these tests, in addition to inducing well-documented somatic signs of withdrawal.
Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.
Coping strategies have been associated with differential stress responsivity, perhaps providing a valuable neurobiological marker for susceptibility to the emergence of depressogenic symptoms or vulnerability to other anxiety-related disorders. Rats profiled with a flexible coping phenotype, for example, exhibit increased neurobiological markers of emotional regulation compared to active and passive copers (Bardi et al., 2012; Lambert et al., 2014). In the current study, responses of male and female rats to prediction errors in a spatial foraging task (dry land maze; DLM) were examined after animals were exposed to chronic unpredictable stress (CUS). Brains were processed following the DLM training/assessment for fos-activation patterns and several measures of neuroplasticity in relevant areas. Behavioral responses observed during both the CUS and DLM phases of testing suggested that males and females employ different means of gathering information such as increased ambulatory exploration in males and rear responses in females. Fecal samples collected during baseline and following CUS swim exposure revealed higher corticosterone (CORT) in active copers, whereas flexible copers had higher dehydroepiandrosterone (DHEA) and DHEA/CORT ratios, both indications of enhanced emotional regulation. Focusing on the neural analysis, flexible copers exhibited fewer fos-immunoreactive cells in the basolateral amygdala and a trend toward lower activation in the insula while encountering the prediction error associated with the DLM probe trial. Coping profiles also differentially influenced markers of neuroplasticity; specifically, flexible copers exhibited higher levels nestin-immunoreactivity (ir). Further, less hippocampal glucocorticoid receptor-ir was observed in the flexible copers than the active and passive copers. In sum, flexible coping rats exhibited evidence of emotional resilience as indicated by several neurobiological measures; however, despite increased rates of depression and related symptoms reported in human females, sex effects weren’t as pervasive as coping strategy profiles in the analysis of neurobiological markers employed in the current study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.