Study design
An exploratory descriptive study was conducted.
Objective
To determine if and how occupational therapists (OTs) and physical therapists (PTs) in acute care hospital settings use activity-based therapy (ABT) and its associated technologies.
Setting
Acute care hospital settings in Canada.
Methods
Semi-structured interviews were conducted with physical and occupational therapists, licensed in Canada, who worked in an acute care neurological setting with individuals with spinal cord injury or disease (SCI/D). To analyze the data, interpretive description was used. NVivo 12 was used for data management.
Results
Five physical therapists and two occupational therapists were interviewed (
n
= 7). Two therapists declined after reading a description of the study. Through analysis, the following themes were identified as affecting the delivery of ABT as part of SCI/D rehabilitation in the acute care setting: (1) Impact of patient acuity on ABT participation, (2) ABT approach unique to the acute care setting, and (3) Influence of acute care work environment and therapy practice. Throughout these themes, therapists referred to dosage as a limiting factor affecting ABT delivery.
Conclusions
Our research reveals that implementing ABT in an acute care setting is challenging considering the high dosage of movement practice required for ABT. To increase dosage and the use of ABT in acute care, strategies could include early patient education on ABT, strategic use of social supports, and use of portable technology already incorporated in acute care.
Study Design:Validation study.Objectives:To describe the development and validation of a computerized application of the international standards for neurological classification of spinal cord injury (ISNCSCI).Setting:Data from acute and rehabilitation care.Methods:The Rick Hansen Institute-ISNCSCI Algorithm (RHI-ISNCSCI Algorithm) was developed based on the 2011 version of the ISNCSCI and the 2013 version of the worksheet. International experts developed the design and logic with a focus on usability and features to standardize the correct classification of challenging cases. A five-phased process was used to develop and validate the algorithm. Discrepancies between the clinician-derived and algorithm-calculated results were reconciled.Results:Phase one of the validation used 48 cases to develop the logic. Phase three used these and 15 additional cases for further logic development to classify cases with ‘Not testable' values. For logic testing in phases two and four, 351 and 1998 cases from the Rick Hansen SCI Registry (RHSCIR), respectively, were used. Of 23 and 286 discrepant cases identified in phases two and four, 2 and 6 cases resulted in changes to the algorithm. Cross-validation of the algorithm in phase five using 108 new RHSCIR cases did not identify the need for any further changes, as all discrepancies were due to clinician errors. The web-based application and the algorithm code are freely available at www.isncscialgorithm.com.Conclusion:The RHI-ISNCSCI Algorithm provides a standardized method to accurately derive the level and severity of SCI from the raw data of the ISNCSCI examination. The web interface assists in maximizing usability while minimizing the impact of human error in classifying SCI.Sponsorship:This study is sponsored by the Rick Hansen Institute and supported by funding from Health Canada and Western Economic Diversification Canada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.