Human norovirus infections are the most common cause of acute nonbacterial gastroenteritis in humans worldwide, and glycan binding plays an important role in the susceptibility to these infections. However, due to the lack of an efficient cell culture system or small animal model for human noroviruses, little is known about the biological role of glycan binding during infection. Murine noroviruses (MNV) are also enteric viruses that bind to cell surface glycans, but in contrast to their human counterparts, they can be grown in tissue culture and a small animal host. In this study, we determined glycan-binding specificities of the MNV strains MNV-1 and CR3 in vitro , identified molecular determinants of glycan binding, and analyzed infection in vivo . We showed that unlike MNV-1, CR3 binding to murine macrophages was resistant to neuraminidase treatment and glycosphingolipid depletion. Both strains depended on N-linked glycoproteins for binding, while only MNV-1 attachment to macrophages was sensitive to O-linked glycoprotein depletion. In vivo , CR3 showed differences in tissue tropism compared to MNV-1 by replicating in the large intestine. Mapping of a glycan-binding site in the MNV-1 capsid by reverse genetics identified a region topologically similar to the histo-blood group antigen (HBGA)-binding sites of the human norovirus strain VA387. The recombinant virus showed distinct changes in tissue tropism compared to wild-type virus. Taken together, our data demonstrate that MNV strains evolved multiple strategies to bind different glycan receptors on the surface of murine macrophages and that glycan binding contributes to tissue tropism in vivo .
Establishment of persistent Epstein-Barr virus (EBV) infection requires transition from a program of full viral latency gene expression (latency III) to one that is highly restricted (latency I and 0) within memory B lymphocytes. It is well established that DNA methylation plays a critical role in EBV gene silencing, and recently the chromatin boundary protein CTCF has been implicated as a pivotal regulator of latency via its binding to several loci within the EBV genome. One notable site is upstream of the common EBNA gene promoter Cp, at which CTCF may act as an enhancer-blocking factor to initiate and maintain silencing of EBNA gene transcription. It was previously suggested that increased expression of CTCF may underlie its potential to promote restricted latency, and here we also noted elevated levels of DNA methyltransferase 1 (DNMT1) and DNMT3B associated with latency I. Within B-cell lines that maintain latency I, however, stable knockdown of CTCF, DNMT1, or DNMT3B or of DNMT1 and DNMT3B in combination did not result in activation of latency III protein expression or EBNA gene transcription, nor did knockdown of DNMTs significantly alter CpG methylation within Cp. Thus, differential expression of CTCF and DNMT1 and -3B is not critical for maintenance of restricted latency. Finally, mutant EBV lacking the Cp CTCF binding site exhibited sustained Cp activity relative to wild-type EBV in a recently developed B-cell superinfection model but ultimately was able to transition to latency I, suggesting that CTCF contributes to but is not necessarily essential for the establishment of restricted latency. E pstein-Barr virus (EBV) establishes a lifelong, largely quiescent (latent) infection within B lymphocytes of its human host.This requires the concerted actions of the viral latency-associated genes, several of which are believed to facilitate a germinal center (GC)-like reaction to promote differentiation of infected B cells into ones phenotypically defined as memory B cells and which serve as the primary reservoir of EBV within persistently infected individuals (reviewed in reference 59). During the establishment of latency in vivo, infected B cells must transition through several programs of EBV latency gene transcription, beginning with expression of the full complement of latency proteins (the latency III program), i.e., six nuclear antigens (EBNAs) and three integral plasma membrane proteins (LMPs), that is associated with a rapid EBV-induced expansion of infected cells. Thereafter, expression proceeds through a more restricted program limited to EBNA1, LMP1, and LMP2 (latency II) and ultimately to a complete restriction of EBV protein expression in the memory B cell (latency 0 [alternatively, the latency program]) (reviewed in reference 44). During subsequent periods of limited cell division, reactivation of expression of the EBV genome-maintenance protein EBNA1 alone (latency I) occurs to ensure against loss of the episomal viral genome (12).With the exception of latency 0, each of the viral latency prog...
The UL84 gene of human cytomegalovirus is implicated in the initiation of viral DNA replication during lytic infection. UL84 is essential for replication of a cloned viral origin of lytic replication (oriLyt) in vitro and mutants of strains AD169 or Towne with deletions or insertions in UL84 fail to grow in cells permissive for wild type virus. Here we show that UL84 is dispensable for replication of a strain TB40/E clone derived from a bacterial artificial chromosome. The genomes of the fibroblast-adapted strains AD169 and Towne are altered substantially from the consensus for strains that have not been propagated extensively in cell culture. The parental TB40/E genome conforms to the consensus genomic organization. Accordingly, natural HCMV strains may possess replication capability that extends beyond the known oriLyt-dependent replication system of laboratory strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.