Soluble methane monooxygenase (MMO) isolated from Methylosinus trichosporium OB3b consists of three components: hydroxylase, reductase, and component B. The active-site diiron cluster of the hydroxylase has been studied with Mossbauer, ENDOR, and EPR spectroscopies. Móssbauer spectra of the oxidized cluster show that the two high-spin irons are antiferromagnetically coupled in accord with our preliminary study (Fox et al. J. Biol. Chem. 1988, 263, 10553-10556). Mossbauer studies also reveal the presence of two cluster conformations at pH 9. The excited-state S = 2 multiple! of the exchange-coupled cluster (Fe3+-Fe3+) gives rise to an integer-spin EPR signal near g = 8; this is the first quantitative study of such a signal from any system. Analysis of the temperature dependence of the g = 8 signal yields J -15 ± 5 cm™1 for the exchange-coupling constant (Htx = /Si-S2). This value is more than 1 order of magnitude smaller than those reported for the oxo-bridged clusters of hemerythrin and Escherichia coli ribonucleotide reductase (Hex = /Si-S2, J = 270 and 220 cm™1, respectively), suggesting that the bridging ligand of the hydroxylase cluster is not an unsubstituted oxygen atom. Móssbauer spectra of the hydroxylase in applied fields of up to 8 T reveal a paramagnetic admixture of a low-lying excited state into the ground singlet. Both the spectral shape and intensity are well represented by assuming that the spin expectation values for the cluster sites increase
Elemental analyses, Mössbauer, and EPR data are reported to show that endonuclease III of Escherichia coli is an iron-sulfur protein. Mössbauer spectra of protein freshly prepared from E. coli grown on 57Fe-enriched medium demonstrate that the native enzyme contains a single 4Fe-4S cluster in the 2+ oxidation state, with a net spin of zero. Upon treatment with ferricyanide, a fraction (less than 25%) of the clusters is oxidized into a state which yields an EPR spectrum near g = 2.01 typical of a 3Fe-4S cluster. The magnetic field dependence of the linear electric field effect verifies this assignment. Electron spin echo modulation on the g = 2.01 form of the protein in deuterated solvent indicates the presence of exchangeable protons in the vicinity of the 3Fe-4S cluster. The data obtained show that the [4Fe-4S]2+ cluster of the native enzyme is resistant to either oxidation or reduction, although photoreduction elicited a g = 1.94 type EPR signal characteristic of a [4Fe-4S]1+ cluster. These studies show that endonuclease III is unique in being both a DNA repair enzyme and an iron-sulfur protein. The function of the 4Fe-4S cluster remains to be established.
ISU-type proteins mediate cluster transfer to apo protein targets. Rate constants have been determined for cluster transfer from ISU to apo Fd for both Homo sapiens and Schizosaccharomyces pombe proteins, and cross reactions have also been examined. Substitution of a key aspartate residue of ISU is found to decrease the rate of cluster transfer by at least an order of magnitude (for wild-type Hs ISU cluster transfer to Hs apo Fd, k(2) approximately 540 M(-1) min(-1), relative 56 M(-1) min(-1) for D37A ISU). This change in rate constant does not reflect any change in binding affinity of the ISU and Fd proteins. The pH dependencies of cluster transfer rates are similar for WT and D37A ISU, arguing against a role for Asp37 as a catalytic base, although evidence for general base catalysis mediating deprotonation of Cys from the apo target is supported by an observed pK(a) of 6.9 determined from the pH profiles for both WT and D37A ISU. Such a pK(a) value is at the lower limit for Cys and is common for solvent-accessible Cys thiols. The temperature dependence of the rate constant defining the cluster transfer reaction for wild type versus the aspartate derivative is distinct. Thermal activation parameters (DeltaH and DeltaS) are consistent with a solvent-accessible ISU-bound cluster, with desolvation as a principle barrier to cluster transfer. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer to be rate-limiting. Fully oxidized cluster appears to be the natural state for transfer to target proteins. Reduced Fd does not readily reduce ISU-bound [2Fe-2S](2+) and does not promote cluster transfer to an apo Fd target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.