In this paper we combine the principled approach to programming with modalities of multimodal type theory (MTT) with the computationally well-behaved identity types of cubical type theory (CTT). The result-cubical modal type theory (Cubical MTT)-has the desirable features of both systems. In fact, the whole is more than the sum of its parts: Cubical MTT validates desirable extensionality principles for modalities that MTT only supported through ad hoc means.We investigate the semantics of Cubical MTT and provide an axiomatic approach to producing models of Cubical MTT based on the internal language of topoi and use it to construct presheaf models. Finally, we demonstrate the practicality and utility of this axiomatic approach to models by constructing a model of (cubical) guarded recursion in a cubical version of the topos of trees. We then use this model to justify an axiomatization of Lob induction and thereby use Cubical MTT to smoothly reason about guarded recursion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.