ObjectiveA novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM).MethodsLY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice.A Phase 1, randomised, placebo-controlled, double-blind study was comprised of three parts: a single-ascending dose (SAD; doses 0.25–8 mg) and 4-week multiple-ascending dose (MAD; doses 0.5–10 mg) studies in healthy subjects (HS), followed by a 4-week multiple-dose Phase 1 b proof-of-concept (POC; doses 0.5–15 mg) in patients with T2DM (ClinicalTrials.gov no. NCT02759107). Doses higher than 5 mg were attained by titration, dulaglutide (DU) was used as a positive control. The primary objective was to investigate safety and tolerability of LY3298176.ResultsLY3298176 activated both GIP and GLP-1 receptor signaling in vitro and showed glucose-dependent insulin secretion and improved glucose tolerance by acting on both GIP and GLP-1 receptors in mice. With chronic administration to mice, LY3298176 potently decreased body weight and food intake; these effects were significantly greater than the effects of a GLP-1 receptor agonist.A total of 142 human subjects received at least 1 dose of LY3298176, dulaglutide, or placebo. The PK profile of LY3298176 was investigated over a wide dose range (0.25–15 mg) and supports once-weekly administration. In the Phase 1 b trial of diabetic subjects, LY3298176 doses of 10 mg and 15 mg significantly reduced fasting serum glucose compared to placebo (least square mean [LSM] difference [95% CI]: −49.12 mg/dL [−78.14, −20.12] and −43.15 mg/dL [−73.06, −13.21], respectively). Reductions in body weight were significantly greater with the LY3298176 1.5 mg, 4.5 mg and 10 mg doses versus placebo in MAD HS (LSM difference [95% CI]: −1.75 kg [−3.38, −0.12], −5.09 kg [−6.72, −3.46] and −4.61 kg [−6.21, −3.01], respectively) and doses of 10 mg and 15 mg had a relevant effect in T2DM patients (LSM difference [95% CI]: −2.62 kg [−3.79, −1.45] and −2.07 kg [−3.25, −0.88], respectively.The most frequent side effects reported with LY3298176 were gastrointestinal (vomiting, nausea, decreased appetite, diarrhoea, and abdominal distension) in both HS and patients with T2DM; all were dose-dependent and considered mild to moderate in severity.ConclusionsBased on these results, the pharmacology of LY3298176 translates from preclinical to clinical studies. LY3298176 has the potential to deliver clinically meaningful improvement in glycaemic control and body weight. The data warrant further clinical evaluation of LY3298176 for the treatment of T2DM and potentially obesity.
The endocrine part of the pancreas plays a central role in blood-glucose regulation. It is well established that an elevation of glucose concentration reduces secretion of the hyperglycaemia-associated hormone glucagon from pancreatic alpha 2 cells. The mechanisms involved, however, remain unknown. Electrophysiological studies have demonstrated that alpha 2 cells generate Ca2+-dependent action potentials. The frequency of these action potentials, which increases under conditions that stimulate glucagon release, is not affected by glucose or insulin. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is present in the endocrine part of the pancreas at concentrations comparable to those encountered in the central nervous system, and co-localizes with insulin in pancreatic beta cells. We now describe a mechanism whereby GABA, co-secreted with insulin from beta cells, may mediate part of the inhibitory action of glucose on glucagon secretion by activating GABAA-receptor Cl- channels in alpha 2 cells. These observations provide a model for feedback regulation of glucagon release, which may be of significance for the understanding of the hypersecretion of glucagon frequently associated with diabetes.
We have monitored L-type Ca2+ channel activity, local cytoplasmic Ca2+ transients, the distribution of insulincontaining secretory granules and exocytosis in individual mouse pancreatic B-cells. Subsequent to the opening of the Ca2+ channels, exocytosis is initiated with a latency <100 ms. The entry of Ca2+ that precedes exocytosis is unevenly distributed over the cell and is concentrated to the region with the highest density of secretory granules. In this region, the cytoplasmic Ca2+ concentration is 5-to 10-fold higher than in the remainder of the cell reaching concentrations of several micromolar. Single-channel recordings confirm that the L-type Ca2+ channels are clustered in the part of the cell containing the secretory granules. This arrangement, which is obviously reminiscent of the 'active zones' in nerve terminals, can be envisaged as being favourable to the B-cell as it ensures that the Ca2+ transient is maximal and restricted to the part of the cell where it is required to rapidly initiate exocytosis whilst at the same time minimizing the expenditure of metabolic energy to subsequently restore the resting Ca2+ concentration.
Background Glucagon-like peptide-1 (GLP-1) receptor agonists are novel agents for type 2 diabetes treatment, offering glucose-dependent insulinotropic effects, reduced glucagonemia and a neutral bodyweight or weight-reducing profile. However, a short half-life (minutes), secondary to rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native GLP-1 hormone. Recently, the GLP-1 receptor agonist exenatide injected subcutaneously twice daily established a novel therapy class. Developing long-acting and efficacious GLP-1 analogues represents a pivotal research goal. We developed a GLP-1 immunoglobulin G (IgG4) Fc fusion protein (LY2189265) with extended pharmacokinetics and activity.
We have monitored electrical activity, voltage-gated Ca2+ currents, and exocytosis in single rat glucagon-secreting pancreatic A-cells. The A-cells were electrically excitable and generated spontaneous Na+- and Ca2+-dependent action potentials. Under basal conditions, exocytosis was tightly linked to Ca2+ influx through ω-conotoxin-GVIA–sensitive (N-type) Ca2+ channels. Stimulation of the A-cells with adrenaline (via β-adrenergic receptors) or forskolin produced a greater than fourfold PKA-dependent potentiation of depolarization-evoked exocytosis. This enhancement of exocytosis was due to a 50% enhancement of Ca2+ influx through L-type Ca2+ channels, an effect that accounted for <30% of the total stimulatory action. The remaining 70% of the stimulation was attributable to an acceleration of granule mobilization resulting in a fivefold increase in the number of readily releasable granules near the L-type Ca2+ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.