Water is an essential nutrient, but there are few recent studies that evaluate how much water individual beef cattle consume and how environmental factors affect an individual's water intake (WI). Most studies have focused on WI of whole pens rather than WI of individual animals. Thus, the objective of this study was to evaluate the impact of environmental parameters on individual-animal WI across different seasons and develop prediction equations to estimate WI, including within different environments and management protocols. Individual daily feed intake and WI records were collected on 579 crossbred steers for a 70-d period following a 21-d acclimation period for feed and water bunk training. Steers were fed in 5 separate groups over a 3-yr period from May 2014 to March 2017. Individual weights were collected every 14 d and weather data were retrieved from the Oklahoma Mesonet's Stillwater station. Differences in WI as a percent of body weight (WI%) were analyzed accounting for average temperature (TAVG), relative humidity (HAVG), solar radiation (SRAD), and wind speed (WSPD). Seasonal (summer vs. winter) and management differences (ad libitum vs. slick bunk) were examined. Regression analysis was utilized to generate 5 WI prediction equations (overall, summer, winter, slick, and ad libitum). There were significant (P < 0.05) differences in WI between all groups when no environmental parameters were included in the model. Although performance was more similar after accounting for all differences in weather variables, significant (P < 0.05) seasonal and feed management differences were still observed for WI%, but were less than 0.75% of steer body weight. The best linear predictors of daily WI (DWI) were dry mater intake (DMI), metabolic body weights (MWTS), TAVG, SRAD, HAVG, and WSPD. Slight differences in the coefficient of determinations for the various models were observed for the summer (0.34), winter (0.39), ad libitum (0.385), slick bunk (0.41), and overall models (0.40). Based on the moderate R 2 values for the WI prediction equations, individual DWI can be predicted with reasonable accuracy based on the environmental conditions that are present, MWTS, and DMI consumed, but substantial variation exists in individual animal WI that is not accounted for by these models.
Water is an essential nutrient, but the effect it has on performance generally receives little attention. There are few systems and guidelines for collection of water intake (WI) phenotypes in beef cattle, which makes large-scale research on WI a challenge. The Beef Improvement Federation has established guidelines for feed intake (FI) and ADG tests, but no guidelines exist for WI. The goal of this study was to determine the test duration necessary for collection of accurate WI phenotypes. To facilitate this goal, individual daily WI and FI records were collected on 578 crossbred steers for a total of 70 d using an Insentec system at the Oklahoma State University Willard Sparks Beef Research Unit. Steers were fed in five groups and were individually weighed every 14 d. Within each group, steers were blocked by BW (low and high) and randomly assigned to one of four pens containing approximately 30 steers per pen. Each pen provided 103.0 m2 of shade and included an Insentec system containing six feed bunks and one water bunk. Steers were fed a constant diet across groups and DMI was calculated using the average of weekly percent DM within group. Average FI and WI for each animal were computed for increasingly large test durations (7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 d), and ADG was calculated using a regression formed from BW taken every 14 d (0, 14, 28, 42, 56, and 70 d). Intervals for all traits were computed starting from both the beginning (day 0) and the end of the testing period (day 70). Pearson and Spearman correlations were computed for phenotypes from each shortened test period and for the full 70-d test. Minimum test duration was determined when the Pearson correlations were greater than 0.95 for each trait. Our results indicated that minimum test duration for WI, DMI, and ADG were 35, 42, and 70 d, respectively. No comparable studies exist for WI; however, our results for FI and ADG are consistent with those in the literature. Although further testing in other populations of cattle and areas of the country should take place, our results suggest that WI phenotypes can be collected concurrently with DMI, without extending test duration, even if following procedures for decoupled intake and gain tests.
In the future, water may not be as readily available due to increases in competition from a growing human population, wildlife, and other agricultural sectors, making selection for water efficiency of beef cattle increasingly important. Substantial selection emphasis has recently been placed on feed efficiency in an effort to reduce production costs, but no emphasis has been placed on making cattle more water efficient due to lack of data. Thus, the objective of this study was to calculate water efficiency metrics for cattle and evaluate their relationship to growth, feed intake (FI), and feed efficiency. Individual daily FI and water intake (WI) records were collected on 578 crossbred steers over a 70-d test period. Animals with low water intake ate less feed, had lower gains, and were more water efficient (as defined by water to gain ratio, W/G, and residual water intake, RWI). However, the amount of water consumed by animals had minimal phenotypic relationship with feed efficiency (residual feed intake [RFI], R2 = 0.1050 and feed to gain ratio (F/G) ratio R2 = 0.0726). Cattle that had low DMI consumed less water, had lower gains, had lower RFI, and had higher F/G. The level of feed consumed had minimal relationship with water efficiency. WI, W/G, RWI, and ADG had moderate heritability estimates of 0.39, 0.39, 0.37, and 0.37, respectively. High heritability estimates were observed for DMI and RFI (0.67 and 0.65, respectively). Feed to gain had a low heritability estimate of 0.16. WI had a strong positive genetic correlation with W/G (0.99) and RWI (0.88), thus selecting for decreased WI should also make cattle more water efficient. The genetic correlation between WI and ADG was 0.05; thus, selecting for low WI cattle should have little effect on growth. There is a low to moderate genetic correlation between WI and DMI (0.34). RWI has a positive genetic correlation with W/G ratio (0.89) and F/G ratio (0.42) and is negatively genetically correlated with RFI (−0.57). Water to gain and F/G had a strong positive genetic correlation (0.68). RFI has a positive genetic correlation with W/G ratio (0.37) and F/G (0.88). Minimal antagonisms seem to be present between WI and ADG, although it should be noted that standard errors were large and often not significantly different from zero due to the small sample size. However, care should be taken to ensure that unintended changes do not occur in DMI or other production traits and incorporation of WI into a selection index would likely prove to be the most effective method for selection.
The Insentec Roughage Intake Control (RIC) system has been validated for the collection of water intake; however, this system has not been validated for water restriction. The objective of this validation was to evaluate the agreement between direct observations and automated intakes collected by the RIC system under both ad libitum and restricted water conditions. A total of 239 crossbred steers were used in a 3-d validation trial, which assessed intake values generated by the RIC electronic intake monitoring system for both ad libitum water intake ( = 122; BASE) and restricted water intake ( = 117; RES). Direct human observations were collected on 4 Insentec water bins for three 24-h periods and three 12-h periods for BASE and RES, respectively. An intake event was noted by the observer when the electronic identification of the animal was read by the transponder and the gate lowered, and starting and ending bin weights were recorded for each intake event. Data from direct observations across each validation period were compared to automated observations generated from the RIC system. Missing beginning or ending weight values for visual observations occasionally occurred due to the observer being unable to capture the value before the monitor changed when bin activity was high. To estimate the impact of these missing values, analyses denoted as OBS were completed with the incomplete record coded as missing data. These analyses were contrasted with analyses where observations with a single missing beginning or end weight (but not both) were assumed to be identical to that which was recorded by the Insentec system (OBS). Difference in mean total intake across BASE steers was 0.60 ± 2.06 kg OBS (0.54 ± 1.99 kg OBS) greater for system observations than visual observations. The comparison of mean total intake across the 3 RES validation days was 0.53 ± 2.30 kg OBS (0.13 ± 1.83 kg OBS) greater for system observations than direct observations. Day was not a significant source of error in this study ( > 0.05). These results indicate that the system was capable of limiting water of individual animals with reasonable accuracy, although errors are slightly higher during water restriction than during ad libitum access. The Insentec system is a suitable resource for monitoring individual water intake of growing, group-housed steers under ad libitum and restricted water conditions.
The Insentec Roughage Intake Control (RIC) system has been validated for the collection of water intake; however, this system has not been validated for water restriction. The objective of this validation was to evaluate the agreement between direct observations and automated intakes collected by the RIC system under both ad libitum and restricted water conditions. A total of 239 crossbred steers were used in a 3-d validation trial, which assessed intake values generated by the RIC electronic intake monitoring system for both ad libitum water intake ( = 122; BASE) and restricted water intake ( = 117; RES). Direct human observations were collected on 4 Insentec water bins for three 24-h periods and three 12-h periods for BASE and RES, respectively. An intake event was noted by the observer when the electronic identification of the animal was read by the transponder and the gate lowered, and starting and ending bin weights were recorded for each intake event. Data from direct observations across each validation period were compared to automated observations generated from the RIC system. Missing beginning or ending weight values for visual observations occasionally occurred due to the observer being unable to capture the value before the monitor changed when bin activity was high. To estimate the impact of these missing values, analyses denoted as OBS were completed with the incomplete record coded as missing data. These analyses were contrasted with analyses where observations with a single missing beginning or end weight (but not both) were assumed to be identical to that which was recorded by the Insentec system (OBS). Difference in mean total intake across BASE steers was 0.60 ± 2.06 kg OBS (0.54 ± 1.99 kg OBS) greater for system observations than visual observations. The comparison of mean total intake across the 3 RES validation days was 0.53 ± 2.30 kg OBS (0.13 ± 1.83 kg OBS) greater for system observations than direct observations. Day was not a significant source of error in this study ( > 0.05). These results indicate that the system was capable of limiting water of individual animals with reasonable accuracy, although errors are slightly higher during water restriction than during ad libitum access. The Insentec system is a suitable resource for monitoring individual water intake of growing, group-housed steers under ad libitum and restricted water conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.