The popularity of the term "integrated curriculum" has grown immensely in medical education over the last two decades, but what does this term mean and how do we go about its design, implementation, and evaluation? Definitions and application of the term vary greatly in the literature, spanning from the integration of content within a single lecture to the integration of a medical school's comprehensive curriculum. Taking into account the integrated curriculum's historic and evolving base of knowledge and theory, its support from many national medical education organizations, and the ever-increasing body of published examples, we deem it necessary to present a guide to review and promote further development of the integrated curriculum movement in medical education with an international perspective. We introduce the history and theory behind integration and provide theoretical models alongside published examples of common variations of an integrated curriculum. In addition, we identify three areas of particular need when developing an ideal integrated curriculum, leading us to propose the use of a new, clarified definition of "integrated curriculum", and offer a review of strategies to evaluate the impact of an integrated curriculum on the learner. This Guide is presented to assist educators in the design, implementation, and evaluation of a thoroughly integrated medical school curriculum.
Although delivering bad news is something that occurs daily in most medical practices, the majority of clinicians have not received formal training in this essential and important communication task. A variety of models are currently being used in medical education to teach skills for delivering bad news. The goals of this article are (1) to describe these available models, including their advantages and disadvantages and evaluations of their effectiveness; and (2) to serve as a guide to medical educators who are initiating or refining curriculum for medical students and residents. Based on a review of the literature and the authors' own experiences, they conclude that curricular efforts to teach these skills should include multiple sessions and opportunities for demonstration, reflection, discussion, practice, and feedback.
We used a degenerate RT-PCR screen and subsequent realtime quantitative RT-PCR assays to examine the expression of HOX and TALE-family genes in 34 cases of chromosomally defined AML for which outcome data were available. AMLs with favorable cytogenetic features were associated with low overall HOX gene expression whereas poor prognostic cases had high levels. Characteristically, multiple HOXA family members including HOXA3-HOXA10 were jointly overexpressed in conjunction with HOXB3, HOXB6, MEIS1 and PBX3. Higher levels of expression were also observed in the FAB subtype, AML-M1. Spearmann correlation coefficients indicated that the expression levels for many of these genes were highly interrelated. While we did not detect any significant correlations between HOX expression and complete response rates or age in this limited set of patients, there was a significant correlation between event-free survival and HOXA7 with a trend toward significance for HoxA9, HoxA4 and HoxA5. While patients with elevated HOX expression did worse, there were notable exceptions. Thus, although HOX overexpression and clinical resistance to chemotherapy often coincide, they are not inextricably linked. Our results indicate that quantitative HOX analysis has the potential to add new information to the management of patients with AML, especially where characteristic chromosomal alterations are lacking.
E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt͞-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently down-regulated in lung cancer, and that loss of E-cadherin or -catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a -catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li ؉ , a GSK3 inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free -catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li ؉ , histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT͞-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.