This powerful new land surface modeling system integrates data from advanced observing systems to support improved forecast model initialization and hydrometeorological investigations. Land surface temperature and wetness conditions affect and are affected by numerous climatological, meteorological, ecological, and geophysical phenomena. Therefore, accurate, high-resolution estimates of terrestrial water and energy storages are valuable for predicting climate change, weather, biological and agricultural productivity, and flooding, and for performing a wide array of studies in the broader biogeosciences. In particular, terrestrial stores of energy and water modulate fluxes between the land and atmosphere and exhibit persistence on diurnal, seasonal, and interannual time scales. Furthermore, because soil moisture, temperature, and snow are integrated states, biases in land surface forcing data and parameterizations accumulate as errors in the representations of these states in operational numerical weather forecast and climate models and their associated coupled data assimilation systems. That leads to incorrect surface water and energy partitioning, and, hence, inaccurate predictions. Reinitialization of land surface states would mollify this problem if the land surface fields were reliable and available globally, at high spatial resolution, and in near-real time.A Global Land Data Assimilation System (GLDAS) has been developed jointly by scientists at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) in order to produce such fields. GLDAS makes use of the new generation of groundand space-based observation systems, which provide data to constrain the modeled land surface states. Constraints are applied in two ways. First, by forcing the land surface models (LSMs) with observationbased meteorological fields, biases in atmospheric model-based forcing can be avoided. Second, by employing data assimilation techniques, observations of land surface states can be used to curb unrealistic model states. Through innovation and an ever-improving conceptualization of the physics underlying earth system processes, LSMs have continued to evolve and to display an improved ability to simulate complex phenomena. Concurrently, increases in computing power and affordability are allowing global simulations to be run more routinely and with less processing time, at spatial resolutions that could only be simulated using supercomputers five years ago. GLDAS harnesses this low-cost computing power to integrate observationbased data products from multiple sources within a sophisticated, global, high-resolution land surface modeling framework.What makes GLDAS unique is the union of all of these qualities: it is a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial modeling system that incorporates satellite-and ground-based observations in order to produce opt...
Climate change is expected to accelerate the hydrologic cycle, increase the fraction of precipitation that is rain, and enhance snowpack melting. The enhanced hydrological cycle is also expected to increase snowfall amounts due to increased moisture availability. These processes are examined in this paper in the Colorado Headwaters region through the use of a coupled high-resolution climate-runoff model. Four high-resolution simulations of annual snowfall over Colorado are conducted. The simulations are verified using Snowpack Telemetry (SNOTEL) data. Results are then presented regarding the grid spacing needed for appropriate simulation of snowfall. Finally, climate sensitivity is explored using a pseudo-global warming approach. The results show that the proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing and parameterizations. The pseudo-global warming simulations indicate enhanced snowfall on the order of 10%-25% over the Colorado Headwaters region, with the enhancement being less in the core headwaters region due to the topographic reduction of precipitation upstream of the region (rain-shadow effect). The main climate change impacts are in the enhanced melting at the lower-elevation bound of the snowpack and the increased snowfall at higher elevations. The changes in peak snow mass are generally near zero due to these two compensating effects, and simulated wintertime total runoff is above current levels. The 1 April snow water equivalent (SWE) is reduced by 25% in the warmer climate, and the date of maximum SWE occurs 2-17 days prior to current climate results, consistent with previous studies.
The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979-2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translate into subsequent small improvements in simulated streamflow. The assimilation of snow depth datasets were found to generally improve the snow fields, but these improvements did not always translate to corresponding improvements in streamflow, including some notable degradations observed in the western United States. A quantitative examination of the percentage drought area from root-zone soil moisture and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil moisture assimilation provides improvements at short time scales, both in the magnitude and representation of the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often disadvantageous.
[1] Eight years (2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010) of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.