Transcription regulators STAT1 and STAT2 are key components of the interferon signaling system leading to innate antiviral immunity. The related STAT3 protein is a regulator of interleukin-6-type cytokine signals and can contribute to both cell growth and death important for cancer gene regulation and tumor survival. These three STAT proteins are targeted for proteasome-mediated degradation by RNA viruses in the Rubulavirus genus of the Paramyxoviridae. A single viral protein, the V protein, assembles STAT-specific ubiquitin ligase complexes from cellular components. Simian virus 5 (SV5) targets STAT1, human parainfluenza virus 2 targets STAT2, and mumps virus targets both STAT1 and STAT3. Analysis of the V-dependent degradation complex (VDC) composition and assembly revealed several features contributing to targeting specificity. SV5 and mumps V proteins require STAT2 to recruit the STAT1 target, yet mumps V protein binds STAT3 independent of STAT1 and STAT2. All Rubulavirus V proteins tested require cellular DDB1 to target STATs for degradation but differ in the use of Roc1, which is essential for mumps V STAT3 targeting. Protein interaction analysis reveals that paramyxovirus V proteins can homo-and heterooligomerize and that the conserved cysteine-rich zinc-binding C-terminal domain is necessary and sufficient for oligomerization. Purified SV5 V protein spontaneously assembles into spherical macromolecular particles, and similar particles constitute SV5 and mumps VDC preparations.
Cardiac muscle contraction is regulated by Ca 2؉through the troponin complex consisting of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). We reported previously that the abnormal splicing of cardiac TnT in turkeys with dilated cardiomyopathy resulted in a greater binding affinity to TnI. In the present study, we characterized a polymorphism of cardiac TnI in the heart of wild turkeys. cDNA cloning and sequencing of the novel turkey cardiac TnI revealed a single amino acid substitution, R111C. Arg 111 in avian cardiac TnI corresponds to a Lys in mammals. This residue is conserved in cardiac and skeletal muscle TnIs across the vertebrate phylum, implying a functional importance. In the partial crystal structure of cardiac troponin, this amino acid resides in an ␣-helix that directly contacts with TnT. Structural modeling indicates that the substitution of Cys for Arg or Lys at this position would not disrupt the global structure of troponin. To evaluate the functional significance of the different size and charge between the Arg and Cys side chains, protein-binding assays using purified turkey cardiac TnI expressed in Escherichia coli were performed. The results show that the R111C substitution lowered binding affinity to TnT, which is potentially compensatory to the increased TnI-binding affinity of the cardiomyopathyrelated cardiac TnT splicing variant. Therefore, the fixation of the cardiac TnI Cys 111 allele in the wild turkey population and the corresponding functional effect reflect an increased fitness value, suggesting a novel target for the treatment of TnT myopathies.
OBJECTIVE To determine long-term outcomes for islet-alone and islet-after-kidney transplantation in adults with type 1 diabetes complicated by impaired awareness of hypoglycemia. RESEARCH DESIGN AND METHODS This was a prospective interventional and observational cohort study of islet-alone (n = 48) and islet-after-kidney (n = 24) transplant recipients followed for up to 8 years after intraportal infusion of one or more purified human pancreatic islet products under standardized immunosuppression. Outcomes included duration of islet graft survival (stimulated C-peptide ≥0.3 ng/mL), on-target glycemic control (HbA1c <7.0%), freedom from severe hypoglycemia, and insulin independence. RESULTS Of the 48 islet-alone and 24 islet-after-kidney transplantation recipients, 26 and 8 completed long-term follow-up with islet graft function, 15 and 7 withdrew from follow-up with islet graft function, and 7 and 9 experienced islet graft failure, respectively. Actuarial islet graft survival at median and final follow-up was 84% and 56% for islet-alone and 69% and 49% for islet-after-kidney (P = 0.007) with 77% and 49% of islet-alone and 57% and 35% of islet-after-kidney transplantation recipients maintaining posttransplant HbA1c <7.0% (P = 0.0017); freedom from severe hypoglycemia was maintained at >90% in both cohorts. Insulin independence was achieved by 74% of islet-alone and islet-after-kidney transplantation recipients, with more than one-half maintaining insulin independence during long-term follow-up. Kidney function remained stable during long-term follow-up in both cohorts, and rates of sensitization against HLA were low. Severe adverse events occurred at 0.31 per patient-year for islet-alone and 0.43 per patient-year for islet-after-kidney transplantation. CONCLUSIONS Islet transplantation results in durable islet graft survival permitting achievement of glycemic targets in the absence of severe hypoglycemia for most appropriately indicated recipients having impaired awareness of hypoglycemia, with acceptable safety of added immunosuppression for both islet-alone and islet-after-kidney transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.