Inland waters, including lakes, are one of the key points of the carbon cycle. Using remote sensing data in lake monitoring has advantages in both temporal and spatial coverage over traditional in-situ methods that are time consuming and expensive. In this study, we compared two sensors on different Copernicus satellites: Multispectral Instrument (MSI) on Sentinel-2 and Ocean and Land Color Instrument (OLCI) on Sentinel-3 to validate several processors and methods to derive water quality products with best performing atmospheric correction processor applied. For validation we used in-situ data from 49 sampling points across four different lakes, collected during 2018. Level-2 optical water quality products, such as chlorophyll-a and the total suspended matter concentrations, water transparency, and the absorption coefficient of the colored dissolved organic matter were compared against in-situ data. Along with the water quality products, the optical water types were obtained, because in lakes one-method-to-all approach is not working well due to the optical complexity of the inland waters. The dynamics of the optical water types of the two sensors were generally in agreement. In most cases, the band ratio algorithms for both sensors with optical water type guidance gave the best results. The best algorithms to obtain the Level-2 water quality products were different for MSI and OLCI. MSI always outperformed OLCI, with R2 0.84–0.97 for different water quality products. Deriving the water quality parameters with optical water type classification should be the first step in estimating the ecological status of the lakes with remote sensing.
The European Space Agency’s Copernicus satellites Sentinel-2 and Sentinel-3 provide observations with high spectral, spatial, and temporal resolution which can be used to monitor inland and coastal waters. Such waters are optically complex, and the water color may vary from completely clear to dark brown. The main factors influencing water color are colored dissolved organic matter, phytoplankton, and suspended sediments. Recently, there has been a growing interest in the use of the optical water type (OWT) classification in the remote sensing of ocean color. Such classification helps to clarify relationships between different properties inside a certain class and quantify variation between classes. In this study, we present a new OWT classification based on the in situ measurements of reflectance spectra for boreal region lakes and coastal areas without extreme optical conditions. This classification divides waters into five OWT (Clear, Moderate, Turbid, Very Turbid, and Brown) and shows that different OWTs have different remote sensing reflectance spectra and that each OWT is associated with a specific bio-optical condition. Developed OWTs are distinguishable by both the MultiSpectral Instrument (MSI) and the Ocean and Land Color Instrument (OLCI) sensors, and the accuracy of the OWT assignment was 95% for both the MSI and OLCI bands. To determine OWT from MSI images, we tested different atmospheric correction (AC) processors, namely ACOLITE, C2RCC, POLYMER, and Sen2Cor and for OLCI images, we tested AC processors ALTNNA, C2RCC, and L2. The C2RCC AC processor was the most accurate and reliable for use with MSI and OLCI images to estimate OWTs.
The Sentinel-3 mission launched its first satellite Sentinel-3A in 2016 to be followed by Sentinel-3B and Sentinel-3C to provide long-term operational measurements over Earth. Sentinel-3A and 3B are in full operational status, allowing global coverage in less than two days, usable to monitor optical water quality and provide data for environmental studies. However, due to limited ground truth data, the product quality has not yet been analyzed in detail with the fiducial reference measurement (FRM) dataset. Here, we use the fully characterized ground truth FRM dataset for validating Sentinel-3A Ocean and Land Colour Instrument (OLCI) radiometric products over optically complex Estonian inland waters and Baltic Sea coastal areas. As consistency between satellite and local data depends on uncertainty in field measurements, filtering of the in situ data has been made based on the uncertainty for the final comparison. We have compared various atmospheric correction methods and found POLYMER (POLYnomial-based algorithm applied to MERIS) to be most suitable for optically complex waters under study in terms of product accuracy, amount of usable data and also being least influenced by the adjacency effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.