Sooner Trend Anadarko Canadian Kingfisher, also known as STACK, is a booming unconventional oil play in North America. As one of the main features that makes the asset profitable, multiple targeting benches raise a challenge of optimization. Well-developed natural fracture system brings in another level of complexity to estimate well spacing. This study introduces an integrated workflow to better understand the fluid flow mechanism in the reservoir and optimize development strategy. From borehole image log, natural fracture orientation and density was interpreted and statistically populated into geologic model along with petrophysical properties. To account for productivity enhancement due to natural fractures, enhanced permeability was embedded into the simulation model according to the distribution of discrete fracture network. After being history matched, the reservoir model was used to test the sensitivity on well spacing, landing zone and hydraulic fracturing pump schedule. Both infill drilling program and green field development scenarios were tested and compared to optimize our field development study. Production history match indicates that natural fractures serve as fluid flow conduit and contribute significantly to the production in Osage. Pressure transient observation shows a similar reservoir behavior in the Osage as opposed to the Woodford. Multiple wells experience productivity reduction over longer production history, indicating near-field damage (such as scaling) and/or far-field damage (such as fracture closure). Introduction of skin factor and pressure dependent permeability captured the trend on productivity behavior in the history match. In addition, the simulation study shed light on the hydraulic fracture geometry that provides direct insight on well spacing and landing zone analyses. Results from the infill drilling program show that staggered design with 3 Osage and 4 Woodford wells per section yields the higher oil recovery. However, using the greenfield sensitivities, and depending on the pumping schedule, hydraulic fractures from Woodford wells show upward growth, draining both formations effectively even without Osage wells. This study provides valuable information about the development strategy in STACK unconventional resources, particularly for scenarios with natural fracture system and multiple targeting zones. The simulation workflow considers well interference in both horizontal and vertical directions simultaneously to optimize oil recovery and reduce operational cost.
As a well-known tight oil dolomite reservoir in Texas, San Andres formation has attracted broad attention about horizontal drilling and development strategy. To optimize the oil recovery and asset’s economics, the aim of the study was to use an integrated approach to understand reservoir heterogeneity and performance, determine optimal landing zone and its impact on production, understand fracture geometry using different pumping schedules, and the optimal cluster spacing. In addition, the potential benefit of a refrac and infill drilling program was also investigated. To tackle the optimization problem, an integrated reservoir modeling workflow was developed. Starting with a 1-D geomechanical model which captures the in situ stress profile and rock mechanics, hydraulic fracture modeling was developed to history match the treatment process, and therefore a comprehensive fracture geometry can be estimated. In the interim, a geological model with populated reservoir properties was established based on the offset data including petrophysical logs, imaging logs and cores. After calibration, the dynamic reservoir model was built to test multiple sensitivity runs for an optimized field development strategy. Geological modeling separated the field into two models to study the variation of properties on the east and west side. The east section shows a higher porosity and lower saturations. Those water saturations increase below the main pay zone indicating a potential water source. In addition, special core analysis shows a strong oil-wet nature of the reservoir rock. In the east section, sensitivity runs included infill development and variations in landing depth. It is noted that the production is not sensitive to landing zone because fracture geometry is primarily controlled by vertical stress profile. In the west section, sensitivity runs included refrac, infill drilling, and a greenfield development plan with variations on well spacing and completion design. The observation shows tighter well spacing or cluster spacing accelerates the oil production in early time, while yielding similar long term oil recovery and shows a combination of refrac and infill drilling yields a 21% incremental oil production beyond the base case. This study provides valuable information about the workflow to develop tight oil plays by describing a detailed case study. The result also sheds light on the optimized field development strategy for analogous fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.