Nitrate (NO(3)) loss from arable systems to surface and groundwater has attracted considerable attention in recent years in Ireland. Little information exists under Irish conditions, which are wet and temperate, on the effects of winter cover crops and different tillage techniques on NO(3) leaching. This study investigated the efficacy of such practices in reducing NO(3) leaching from a spring barley (Hordeum vulgare L.) system in the Barrow River valley, southeast Ireland. The study compared the effect of two tillage systems (plow-based tillage and noninversion tillage) and two over-winter alternatives (no vegetative cover and a mustard cover crop) on soil solution NO(3) concentrations at 90 cm depth over two winter drainage seasons (2003/04 and 2004/05). Soil samples were taken and analyzed for inorganic N. During both years of the study, the use of a mustard cover crop significantly reduced NO(3) losses for the plowed and reduced cultivation treatments. Mean soil solution NO(3) concentrations were between 38 and 70% lower when a cover crop was used, and total N load lost over the winter was between 18 and 83% lower. Results from this study highlight the importance of drainage volume and winter temperatures on NO(3) concentrations in soil solution and overall N load lost. It is suggested that cover crops will be of particular value in reducing NO(3) loss in temperate regions with mild winters, where winter N mineralization is important and high winter temperatures favor a long growing season.
Ensiling vegetables with forage crops is a suggested method of waste diversion and can be directly utilized as a livestock feed. Carrot or pumpkin, ensiled at 0, 20, or 40% dry matter (DM) with crop sorghum, and with or without a second-generation silage inoculant were assessed for nutritive composition, organic acid profiles, aerobic stability and in vitro rumen fermentation characteristics. The study was a completely randomized design, with the fixed effects consisting of vegetable type (carrot vs. pumpkin), level (i.e., the level of vegetables), inoculant (inoculant or non-inoculant) and the interactions, and mini-silos within treatment as the random effect. The experimental unit for sorghum treatments represented by each mini-silo (5 kg capacity). Silage was sampled after 70-days ensiling for nutrient composition, 14-day aerobic stability, organic acid profiles and microbial diversity. After 24 h in vitro incubation, rumen fermentation parameters were assessed, measuring gas and methane (CH4) production, in vitro digestibility and volatile fatty acid concentrations. Sorghum ensiled with carrot or pumpkin at 20% or 40% DM increased crude fat (P ≤ 0.01) and decreased (P ≤ 0.01) silage surface temperature upon aerobic exposure compared to the control. Bacterial communities analyzed through 16S rRNA gene sequencing linearly increased (P ≤ 0.01) in diversity across both vegetables when the vegetable proportion was increased in the silage; dominated by Lactobacillus species. ITS analysis of the fungal microbiota upon silage opening and after 14 days (aerobic stability) identified increased (P ≤ 0.03) fungal diversity with increasing vegetable proportions, predominantly populated by Fusarium denticulatum, Issatchenkia orientalis, Kazachstania humilis, and Monascus purpureus. Upon assessment in vitro, there was an increase (P ≤ 0.04) in in vitro digestibility and some CH4 parameters (% CH4, and mg CH4/g DM), with no effect (P ≥ 0.17) on remaining CH4 parameters (mL CH4/g DM, mg CH4/g digested DM), gas production or pH. However, increasing vegetable amount decreased percentage of acetic acid and increased percentage of propionic acid of the total VFA, decreasing A:P ratio and total VFA concentration as a result (P ≤ 0.01). The results from this study indicate including carrot or pumpkin at 20 or 40% DM in a sorghum silage can produce a highly digestible, microbially diverse and energy-rich livestock feed.
Incorporation of carrot or pumpkin at 0, 20 or 40% dry matter (DM-basis) with crop maize, with or without a silage inoculant was evaluated after 70 days ensiling for microbial community diversity, nutrient composition, and aerobic stability. Inclusion of carrots or pumpkin had a strong effect on the silage bacterial community structure but not the fungal community. Bacterial microbial richness was also reduced (P = 0.01) by increasing vegetable proportion. Inverse Simpson’s diversity increased (P = 0.04) by 18.3% with carrot maize silage as opposed to pumpkin maize silage at 20 or 40% DM. After 70 d ensiling, silage bacterial microbiota was dominated by Lactobacillus spp. and the fungal microbiota by Candida tropicalis, Kazachstania humilis and Fusarium denticulatum. After 14 d aerobic exposure, fungal diversity was not influenced (P ≥ 0.13) by vegetable type or proportion of inclusion in the silage. Inoculation of vegetable silage lowered silage surface temperatures on day-7 (P = 0.03) and day-14 (P ≤ 0.01) of aerobic stability analysis. Our findings suggest that ensiling unsalable vegetables with crop maize can successfully replace forage at 20 or 40% DM to produce a high-quality livestock feed.
Vegetables regarded as unsalable at processing often undergo disposal into landfill, threatening food security and increasing emissions through decomposition. Ensiling vegetables with forage crops is a suggested method of waste reduction that could also double as a livestock feed. Carrot or pumpkin, ensiled at 0%, 20% or 40% DM with crop sorghum, and with or without a second-generation silage inoculant were assessed for nutritive composition, organic acid profiles, aerobic stability and in vitro rumen fermentation characteristics. Silage was sampled after 70-days ensiling for nutrient composition, 14-day aerobic stability, organic acid profiles and microbial diversity. Sorghum ensiled with carrot or pumpkin at 20% or 40% DM increased crude fat (P ≤ 0.01) and decreased (P ≤ 0.01) silage surface temperature upon aerobic exposure compared to the control. Bacterial communities analyzed through 16S rRNA gene sequencing linearly increased (P ≤ 0.01) in diversity as vegetable proportion increased in the silage; dominated by Lactobacillus species. Upon assessment in vitro, there was an increase (P ≤ 0.04) in in vitro digestibility and some CH4 parameters (% CH4, and mg CH4/g DM), with no effect (P ≥ 0.17) on remaining CH4 parameters (mL CH4/g DM, mg CH4/g DMD), gas production or pH. However, increasing vegetable proportion decreased acetic and increased propionic acid concentrations respectively, decreasing A:P ratio and total VFA as a result (P ≤ 0.01). Results from this study indicate including carrot or pumpkin at 20% or 40% DM in a sorghum silage can produce a highly digestible, microbially diverse and energy-rich livestock feed whilst acting as a method of waste diversion of considerable environmental benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.