Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The fracture toughness for a mode I/II crack propagating in a ductile material has been subject to numerous investigations. However, the influence of the material hardening law has received very limited attention, with isotropic hardening being the default choice if cyclic loads are absent. The present work extends the existing studies of monotonic mode I/II steady-state crack propagation with the goal to compare the predictions from an isotropic hardening model with that of a kinematic hardening model. The work is conducted through a purpose-built steady-state framework that directly delivers the steady-state solution. In order to provide a fracture criterion, a cohesive zone model is adopted and embedded at the crack tip in the steady-state framework, while a control algorithm for the far-field, that significantly reduces the number of equilibrium iterations is employed to couple the far-field loading to the correct crack tip opening. Results show that the steady-state fracture toughness (shielding ratio) obtained for a kinematic hardening material is larger than for the corresponding isotropic hardening case. The difference between the isotropic and kinematic model is tied to the nonproportional loading conditions and reverse plasticity. This also explains the vanishing difference in the shielding ratio when considering mode II crack propagation as the non-proportional loading is less pronounced and the reverse plasticity is absent.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.