Phase separation of mixtures of oppositely charged polymers provides a simple and direct route to compartmentalisation via complex coacervation, which may have been important for driving primitive reactions as part of the RNA world hypothesis. However, to date, RNA catalysis has not been reconciled with coacervation. Here we demonstrate that RNA catalysis is viable within coacervate microdroplets and further show that these membrane-free droplets can selectively retain longer length RNAs while permitting transfer of lower molecular weight oligonucleotides.
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.
Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life-by supporting their formation and continuous enrichment in a long-lasting environment. Here we explored how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides, and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals, and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occurred within less than 30 minutes. The findings unite physical conditions in one location which were crucial for the chemical emergence of biopolymers.They suggest that heated microbubbles could have hosted the first cycles of molecular evolution.Life is a non-equilibrium system. By evolution, modern life has created a complex protein machinery to maintain the nonequilibrium of crowded molecules inside dividing vesicles. Based on entropy arguments, equilibrium conditions were unlikely to trigger the evolutionary processes during the origin of life 1 . External non-equilibria had to be provided for the accumulation, encapsulation, and replication of the first informational molecules. They can locally reduce entropy, give rise to patterns 2 , and lean the system towards a continuous, dynamic self-organization 3 . Non-equilibrium dynamics can be found in many fluid systems, including gravity-driven instabilities in the atmosphere 4 , the accumulation of particles in nonlinear flow 5,6 , and shear-dependent platelet activation in blood 7 . Our experiments discuss whether gas-water interfaces in a thermal gradient could have provided such a nonequilibrium setting for the emergence of life on early Earth.Non-equilibrium systems in the form of heat flows were a very common and simplistic setting, found ubiquitously on the planet 8 . Hydrothermal activity is considered abundant on early Earth and intimately linked to volcanic activity 9 . Water is thereby circulating through the pore space of the volcanic rocks, which is formed by magmatic vesiculation (primary origin) and fractures (secondary origin). These systems have been studied as non-equilibrium driving forces for biological molecules in a variety of processes 10-17 .Gases originating from degassing of deeper magma bodies percolate through these water-filled pore networks. At shallow depths bubbles are formed by gases dissolved in water and formation of vapor where sufficient heat is supplied by the hydrothermal system. The bubbles create gas-water interfaces, which previously have been discussed in connection with atmospheric bubble-aerosol-droplet cycles 18 , the adsorption of lipid monolayers and DNA to the interface 19,20 , or the formation of pep...
The ability of RNA to catalyze RNA ligation is critical to its central role in many prebiotic model scenarios, in particular the copying of information during self‐replication. Prebiotically plausible ribozymes formed from short oligonucleotides can catalyze reversible RNA cleavage and ligation reactions, but harsh conditions or unusual scenarios are often required to promote folding and drive the reaction equilibrium towards ligation. Here, we demonstrate that ribozyme activity is greatly enhanced by charge‐mediated phase separation with poly‐L‐lysine, which shifts the reaction equilibrium from cleavage in solution to ligation in peptide‐RNA coaggregates and coacervates. This compartmentalization enables robust isothermal RNA assembly over a broad range of conditions, which can be leveraged to assemble long and complex RNAs from short fragments under mild conditions in the absence of exogenous activation chemistry, bridging the gap between pools of short oligomers and functional RNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.