The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages.
We report a concise asymmetric synthesis of rakicidin A, a macrocyclic depsipeptide that selectively inhibits the growth of hypoxic cancer cells and stem-like leukemia cells. Key transformations include a diastereoselective organocatalytic cross-aldol reaction to build the polyketide portion of the molecule, a highly hindered ester fragment coupling reaction, an efficient Helquist-type Horner-Wadsworth-Emmons (HWE) macrocyclization, and a new DSC-mediated elimination reaction to construct the sensitive APD portion of rakicidin A. We further report the preparation of a simplified structural analogue (WY1) with dramatically enhanced hypoxia-selective activity.
Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.
We demonstrate that the natural product brartemicin, a newly discovered inhibitor of cancer cell invasion, is a high-affinity ligand of the carbohydrate-recognition domain (CRD) of the C-type lectin mincle.
The preparation of heteroatom-substituted p-quinones is ideally performed by direct addition of a nucleophile followed by in situ reoxidation. Albeit an appealing strategy, the reactivity of the p-quinone moiety is not easily tamed and no broadly applicable method for heteroatom functionalization exists. Shown herein is that Co(OAc) and Mn(OAc) ⋅2 H O act as powerful catalysts for oxidative p-quinone functionalization with a collection of O, N, and S nucleophiles, using oxygen as the terminal oxidant. Preliminary mechanistic observations and the first synthesis of the cytotoxic natural product strongylophorine-26 is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.