Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0–1 M) and nitric acid (0.1–10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.
To enable the deployment of molten salt reactor technology, the development of off-gas treatment systems and advanced monitoring tools capable of operating with high temperatures and radiation fields while delivering near real-time information is necessary. This study aims to fulfill this requirement and proposes laser-induced breakdown spectroscopy (LIBS) for monitoring molten salt aerosol streams. A sheath gas measuring method was developed to protect optical elements from aerosol particles and to ensure a relatively constant aerosol stream for measurement. An aqueous system was studied to demonstrate the utility of LIBS for monitoring possible fission products in an aerosol stream: Gd, Nd, and Sm up to 2000 parts per million (ppm). A calibration model was built using partial least squares (PLS) regression with five, six, and nine latent variables for Gd, Nd, and Sm, respectively. This calibration model successfully estimated the concentrations of three test samples, which were validated with inductively charged plasma optical emission spectroscopy measurements at a 99.9% confidence interval. To enhance these models, a genetic algorithm was used to filter the spectra before entering the PLS model, thereby limiting the spectral features being regressed to those with greater correlations to concentration. This allowed for the number of latent variables used in the PLS models to be reduced to four, three, and three for Gd, Nd, and Sm, respectively. Lastly, the genetic algorithm-filtered PLS models were used to predict the concentrations of the aerosol stream on a real-time dataset and resulted in a 73%, 18%, and 25% improvement in root mean squared error of prediction compared to the original PLS models developed.
Chemical processing of highly radioactive materials commonly takes place in heavily shielded hot cells. The remote, real-time monitoring of chemical processing streams via optical spectroscopic techniques in hot cells may be particularly useful. Here, we describe the implementation of Raman spectroscopy and chemometric analysis to monitor the dissolution of aluminum-clad targets containing irradiated aluminum–neptunium oxide cermet pellets in caustic solutions in a hot cell environment. Partial least squares regression analysis was used to generate calibration models to quantify the concentration of dissolved aluminum, nitrate, and hydroxide in solutions within the radiochemical hot cell. This work explored a systematic approach to optimize a matrix of calibration standards using a D-optimal experimental design. The Design of Experiments-based regression model, in comparison to more traditional analytical approaches, was found to be the more practical method for building calibration models, with fewer samples, to obtain informative analytical data from Raman spectra.
J. McFarlane, (a) N. D. Bull Ezell, (a) G. D. DelCul, (a) D. E. Holcomb, (a) K. Myhre, (a) A. Lines, (b) S. Bryan, (b) H. Felmy, (b) and B. J. Riley (b) (a) Oak Ridge National Laboratory (b) Pacific Northwest National Laboratory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.