Graphs are central representations of information in many domains including biological and social networks. Graph visualization is needed for discovering underlying structures or patterns within the data, for example communities in a social network, or interaction patterns between protein complexes. Existing graph visualization methods, however, often fail to visualize such structures, because they focus on local details rather than global structural properties of graphs. We suggest a novel modeling-driven approach to graph visualization: As usually in modeling, choose the (generative) model such that it captures what is important in the data. Then visualize similarity of the graph nodes with a suitable multidimensional scaling method, with similarity given by the model; we use a multidimensional scaling method optimized for a rigorous visual information retrieval task. We show experimentally that the resulting method outperforms existing graph visualization methods in finding and visualizing global structures in graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.