A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.
Here we report a method for increased resolution of single exposure three modality x-ray images using super-resolution. The three x-ray image modalities are absorption-, differential phase-contrast-, and dark-field-images. To create super-resolution, a non-mechanically movable micro-focus x-ray source is used. A series of almost identical x-ray projection images is obtained while the point source is translated in a two-dimensional grid pattern. The three image modalities are extracted from fourier space using spatial harmonic analysis, also known as the single-shot method. Using super-resolution on the low-resolution series of the three modalities separately results in high-resolution images for the modalities. This approach allows to compensate for the inherent loss in resolution caused by the single-shot method without increasing the need for stability or algorithms accounting for possible motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.