Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, this requirement corresponds to the constraint that the decisions should be temporarily linearly ordered). Recently the unconstrained influence diagram was proposed to address this drawback. In this framework, we may have a partial ordering of the decisions, and a solution to the decision problem therefore consists not only of a decision policy for the various decisions, but also of a conditional specification of what to do next. Relative to the complexity of solving an influence diagram, finding a solution to an unconstrained influence diagram may be computationally very demanding w.r.t. both time and space. Hence, there is a need for efficient algorithms that can deal with (and take advantage of) the idiosyncrasies of the language. In this paper we propose two such solution algorithms. One resembles the variable elimination technique from influence diagrams, whereas the other is based on conditioning and supports any-space inference. Finally we present an empirical comparison of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.