We develop a two-dimensional solver for the acoustic wave equation with spatially varying coefficients. In what is a new approach, we use a basis of approximate prolate spheroidal wavefunctions and construct derivative operators that incorporate boundary and interface conditions. Writing the wave equation as a first-order system, we evolve the equation in time using the matrix exponential. Computation of the matrix exponential requires efficient representation of operators in two dimensions and for this purpose we use short sums of one-dimensional operators. We also use a partitioned low-rank representation in one dimension to further speed up the algorithm. We demonstrate that the method significantly reduces numerical dispersion and computational time when compared with a fourth-order finite difference scheme in space and an explicit fourth-order Runge-Kutta solver in time.
Most of the traditional approaches to migration by downward extrapolation suffer from inaccuracies caused by using one-way propagation, both in the construction of such propagators in a variable background and the suppression of propagating waves generated by, e.g., steep reflectors. We present a new mathematical formulation and an algorithm for downward extrapolation that suppress only the evanescent waves. We show that evanescent wave modes are associated with the positive eigenvalues of the spatial operator and introduce spectral projectors to remove these modes, leaving all propagating modes corresponding to nonpositive eigenvalues intact. This approach suppresses evanescent modes in an arbitrary laterally varying background. If the background velocity is only depth dependent, then the spectral projector may be applied by using the fast Fourier transform and a filter in the Fourier domain. In computing spectral projectors, we use an iteration that avoids the explicit construction of the eigensystem. Moreover, we use a representation of matrices leading to fast matrix-matrix multiplication and, as a result, a fast algorithm necessary for practical implementation of spectral projectors. The overall structure of the migration algorithm is similar to survey sinking with an important distinction of using a new method for downward continuation. Using a blurred version of the true velocity as a background, steep reflectors can be imaged in a 2D slice of the SEG-EAGE model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.