Studies conducted by the UK Met Office reported significant skill in predicting the winter North Atlantic Oscillation (NAO) index with their seasonal prediction system. At the same time, a very low signal-to-noise ratio was observed, as measured using the "ratio of predictable components" (RPC) metric. We analyse both the skill and signal-to-noise ratio using a new statistical toy model, which assumes NAO predictability is driven by regime dynamics. It is shown that if the system is approximately bimodal in nature, with the model consistently underestimating the level of regime persistence each season, then both the high skill and high RPC value of the Met Office hindcasts can easily be reproduced. Underestimation of regime persistence could be attributable to any number of sources of model error, including imperfect regime structure or errors in the propagation of teleconnections. In particular, a high RPC value for a seasonal mean prediction may be expected even if the model's internal level of noise is realistic.
Recently, much attention has been devoted to better understand the internal modes of variability of the climate system. This is particularly important in mid-latitude regions like the North-Atlantic, which is characterized by a large natural variability and is intrinsically difficult to predict. A suitable framework for studying the modes of variability of the atmospheric circulation is to look for recurrent patterns, commonly referred to as Weather Regimes. Each regime is characterized by a specific large-scale atmospheric circulation pattern, thus influencing regional weather and extremes over Europe. The focus of the present paper is the study of the Euro-Atlantic wintertime Weather Regimes in the climate models participating to the PRIMAVERA project. We analyse here the set of coupled historical simulations (hist-1950), which have been performed both at standard and increased resolution, following the HighresMIP protocol. The models' performance in reproducing the observed Weather Regimes is assessed in terms of different metrics, focussing on systematic biases and on the impact of resolution. We also analyse the connection of the Weather Regimes with the Jet Stream latitude and blocking frequency over the North-Atlantic sector. We find that-for most models-the regime patterns are better represented in the higher resolution version, for all regimes but the NAO-. On the other side, no clear impact of resolution is seen on the regime frequency of occurrence and persistence. Also, for most models, the regimes tend to be more tightly clustered in the increased resolution simulations, more closely resembling the observed ones. However, the horizontal resolution is not the only factor determining the model performance, and we find some evidence that biases in the SSTs and mean geopotential field might also play a role.
Capsule Summary New seasonal retrospective forecasts for 1901-2010 show that skill for predicting ENSO, NAO and PNA is reduced during mid-century periods compared to earlier and more recent high-skill decades.
There is growing evidence that the atmospheric dynamics of the Euro‐Atlantic sector during winter is driven in part by the presence of quasi‐persistent regimes. However, general circulation models typically struggle to simulate these with, for example, an overly weakly persistent blocking regime. Previous studies have showed that increased horizontal resolution can improve the regime structure of a model but have so far only considered a single model with only one ensemble member at each resolution, leaving open the possibility that this may be either coincidental or model dependent. We show that the improvement in regime structure due to increased resolution is robust across multiple models with multiple ensemble members. However, while the high‐resolution models have notably more tightly clustered data, other aspects of the regimes may not necessarily improve and are also subject to a large amount of sampling variability that typically requires at least three ensemble members to surmount.
The role of model resolution in simulating geophysical vortices with the characteristics of realistic Tropical Cyclones (TCs) is well established. The push for increasing resolution continues, with General Circulation Models (GCMs) starting to use sub-10km grid spacing. In the same context it has been suggested that the use of Stochastic Physics (SP) may act as a surrogate for high resolution, providing some of the benefits at a fraction of the cost. Either technique can reduce model uncertainty, and enhance reliability, by providing a more dynamic environment for initial synoptic disturbances to be spawned and to grow into TCs. We present results from a systematic comparison of the role of model resolution and SP in the simulation of TCs, using EC-Earth simulations from project Climate-SPHINX, in large ensemble mode, spanning five different resolutions. All tropical cyclonic systems, including TCs, were tracked explicitly. As in previous studies, the number of simulated TCs increases with the use of higher resolution, but SP further enhances TC frequencies by ≈ 30%, in a strikingly similar way. The use of SP is beneficial for removing systematic climate biases, albeit not consistently so for interannual variability; conversely, the use of SP improves the simulation of the seasonal cycle of TC frequency. An investigation of the mechanisms behind this response indicates that SP generates both higher TC (and TC seed) genesis rates, and more suitable environmental conditions, enabling a more efficient transition of TC seeds into TCs. These results were confirmed by the use of equivalent simulations with the HadGEM3-GC31 GCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.